Skip to main content
Log in

The Role of NRF2/KEAP1 Pathway in Glioblastoma: Pharmacological Implications

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme (GBM) grade IV glioma is the most frequent and deadly intracranial cancer. This tumor is determined by unrestrained progression, uncontroled angiogenesis, high infiltration and weak response to treatment, which is chiefly because of abnormal signaling pathways in the tumor. A member related to the Cap ‘n’ collar family of keypart-leucine zipper transcription agents—the transcription factor NF-E2-related factor 2 (Nrf2)-regulates adaptive protection answers by organized upregulation of many genes that produce the cytoprotective factors. In reply to cellular pressures types such as stresses, Nrf2 escapes Kelch-like ECH-related protein 1 (Keap1)-facilitated suppression, moves from the cytoplasm towards the nucleus and performs upregulation of gene expression of antioxidant responsive element (ARE). Nrf2 function is related tocontrolling many types of diseases in the human specially GBM tumor.Thus, we will review the epigeneticalregulatory actions on the Nrf2/Keap1 signaling pathway and potential therapeutic options in GBM by aiming the stimulation of Nrf2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GBM:

Glioblastoma

Keap1:

Kelch-like ECH-related protein 1

Nrf2:

Nuclear factor-erythroid factor 2-related factor 2

ARE:

Antioxidant responsive element

WHO:

World Health Organization

CNS:

Central nervous system

IDH-1:

Isocitrate dehydrogenase 1

PI3K:

Phosphoinositide 3-kinase

RTK:

Receptor tyrosine kinase

MGMT:

O6-methylguanyl DNA methyltransferase

RA:

Retinoic acid

TEM:

Trans-mission electron microscopy

TXNIP:

Thioredoxin-interacting protein 1

EGR1:

Early growth response 1

References

  1. Wirsching H-G, Galanis E, Weller M. Glioblastoma. Handb Clin Neurol. 2016;134:381–97.

    Article  PubMed  Google Scholar 

  2. Ahmed S, Hasan MM, Aschner M, Mirzaei H, Alam W, Shah SMM, et al. Therapeutic potential of marine peptides in glioblastoma: Mechanistic insights. Cel Signal. 2021;87:110142.

    Article  CAS  Google Scholar 

  3. Kourti M, Jiang WG, Cai J. Aspects of carbon monoxide in form of CO-releasing molecules used in cancer treatment: more light on the way. Oxid Med Cell Longev. 2017;2017:1–12.

    Article  CAS  Google Scholar 

  4. Nakada M, Kita D, Watanabe T, Hayashi Y, Teng L, Pyko IV, et al. Aberrant signaling pathways in glioma. Cancers. 2011;3(3):3242–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21(21):2683–710.

    Article  CAS  PubMed  Google Scholar 

  6. Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA A Cancer J Clin. 2020;70(4):299–312.

    Article  Google Scholar 

  7. Tsai W-C, Hueng D-Y, Lin C-R, Yang TC, Gao H-W. Nrf2 expressions correlate with WHO grades in gliomas and meningiomas. Int J Mol Sci. 2016;17(5):722.

    Article  PubMed Central  CAS  Google Scholar 

  8. Ji X, Wang H, Zhu J, Zhu L, Pan H, Li W, et al. Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia-induced activation of HIF-1α. Int J Cancer. 2014;135(3):574–84.

    Article  CAS  PubMed  Google Scholar 

  9. Ahmad F, Dixit D, Sharma V, Kumar A, Joshi SD, Sarkar C, et al. Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma. Cell Death Dis. 2016;7(5):e2213-e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sarfraz I, Rasul A, Hussain G, Shah MA, Zahoor AF, Asrar M, et al. 6-Phosphogluconate dehydrogenase fuels multiple aspects of cancer cells: From cancer initiation to metastasis and chemoresistance. BioFactors. 2020;46(4):550–62.

    Article  CAS  PubMed  Google Scholar 

  11. Adnan M, Rasul A, Hussain G, Shah MA, Sarfraz I, Nageen B, et al. Physcion and Physcion 8-O-β-D-glucopyranoside: Natural anthraquinones with potential anticancer activities. Curr Drug Targets. 2021;22(5):488–504.

    Article  CAS  PubMed  Google Scholar 

  12. Muscarella LA, Barbano R, D’Angelo V, Copetti M, Coco M, Balsamo T, et al. Regulation of KEAP1 expression by promoter methylation in malignant gliomas and association with patient’s outcome. Epigenetics. 2011;6(3):317–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li W, Kong AN. Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog. 2009;48(2):91–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee J-M, Johnson JA. An important role of Nrf2-ARE pathway in the cellular defense mechanism. BMB Rep. 2004;37(2):139–43.

    Article  CAS  Google Scholar 

  15. Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD. Dual roles of Nrf2 in cancer. Pharmacol Res. 2008;58(5–6):262–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Niture SK, Kaspar JW, Shen J, Jaiswal AK. Nrf2 signaling and cell survival. Toxicol Appl Pharmacol. 2010;244(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  17. Rangasamy T, Guo J, Mitzner WA, Roman J, Singh A, Fryer AD, et al. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J Exp Med. 2005;202(1):47–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen X-L, Kunsch C. Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Curr Pharm Des. 2004;10(8):879–91.

    Article  CAS  PubMed  Google Scholar 

  19. Niture SK, Jaiswal AK. Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J Biol Chem. 2012;287(13):9873–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reddy N, Kleeberger S, Bream J, Fallon P, Kensler T, Yamamoto M, et al. Genetic disruption of the Nrf2 compromises cell-cycle progression by impairing GSH-induced redox signaling. Oncogene. 2008;27(44):5821–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao F, Wu T, Lau A, Jiang T, Huang Z, Wang X-J, et al. Nrf2 promotes neuronal cell differentiation. Free Radical Biol Med. 2009;47(6):867–79.

    Article  CAS  Google Scholar 

  22. Cho H-Y, Reddy SP, Yamamoto M, Kleeberger SR. The transcription factor NRF2 protects against pulmonary fibrosis. FASEB J. 2004;18(11):1258–60.

    Article  CAS  PubMed  Google Scholar 

  23. Sporn MB, Liby KT. NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer. 2012;12(8):564–71.

    Article  CAS  PubMed  Google Scholar 

  24. Shah ZA, Li R-C, Thimmulappa RK, Kensler TW, Yamamoto M, Biswal S, et al. Role of reactive oxygen species in modulation of Nrf2 following ischemic reperfusion injury. Neuroscience. 2007;147(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  25. Cho H-Y, Jedlicka AE, Reddy SP, Kensler TW, Yamamoto M, Zhang L-Y, et al. Role of NRF2 in protection against hyperoxic lung injury in mice. Am J Respir Cell Mol Biol. 2002;26(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  26. Calkins MJ, Johnson DA, Townsend JA, Vargas MR, Dowell JA, Williamson TP, et al. The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid Redox Signal. 2009;11(3):497–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kanamori M, Higa T, Sonoda Y, Murakami S, Dodo M, Kitamura H, et al. Activation of the NRF2 pathway and its impact on the prognosis of anaplastic glioma patients. Neuro Oncol. 2015;17(4):555–65.

    Article  CAS  PubMed  Google Scholar 

  28. Shibata T, Kokubu A, Saito S, Narisawa-Saito M, Sasaki H, Aoyagi K, et al. NRF2 mutation confers malignant potential and resistance to chemoradiation therapy in advanced esophageal squamous cancer. Neoplasia. 2011;13(9):864-IN26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Panieri E, Saso L. Potential applications of NRF2 inhibitors in cancer therapy. Oxid Med Cell Longev. 2019;2019:1–34.

    Article  CAS  Google Scholar 

  30. Gañán-Gómez I, Wei Y, Yang H, Boyano-Adánez MC, García-Manero G. Oncogenic functions of the transcription factor Nrf2. Free Radical Biol Med. 2013;65:750–64.

    Article  CAS  Google Scholar 

  31. Zhu J, Wang H, Chen F, Fu J, Xu Y, Hou Y, et al. An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy. Free Radical Biol Med. 2016;99:544–56.

    Article  CAS  Google Scholar 

  32. Wang Z, Li Z, Xu H, Liao Y, Sun C, Chen Y, et al. PSMD12 promotes glioma progression by upregulating the expression of Nrf2. Ann Transl Med. 2021;9(8):700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu J, Wang H, Ji X, Zhu L, Sun Q, Cong Z, et al. Differential Nrf2 expression between glioma stem cells and non-stem-like cells in glioblastoma. Oncol Lett. 2014;7(3):693–8.

    Article  CAS  PubMed  Google Scholar 

  34. Seng S, Avraham H, Birrane G, Jiang S, Li H, Katz G, et al. NRP/B mutations impair Nrf2-dependent NQO1 induction in human primary brain tumors. Oncogene. 2009;28(3):378–89.

    Article  CAS  PubMed  Google Scholar 

  35. Pan H, Wang H, Zhu L, Wang X, Cong Z, Sun K, et al. The involvement of Nrf2–ARE pathway in regulation of apoptosis in human glioblastoma cell U251. Neurol Res. 2013;35(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  36. Bu X, Qu X, Guo K, Meng X, Yang X, Huang Q, et al. CD147 confers temozolomide resistance of glioma cells via the regulation of β-TrCP/Nrf2 pathway. Int J Biol Sci. 2021;17(12):3013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhu J, Wang H, Fan Y, Hu Y, Ji X, Sun Q, et al. Knockdown of nuclear factor erythroid 2-related factor 2 by lentivirus induces differentiation of glioma stem-like cells. Oncol Rep. 2014;32(3):1170–8.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao M, Xu H, Zhang B, Hong B, Yan W, Zhang J. Impact of nuclear factor erythroid-derived 2–like 2 and p62/sequestosome expression on prognosis of patients with gliomas. Hum Pathol. 2015;46(6):843–9.

    Article  CAS  PubMed  Google Scholar 

  39. Youn P, Chen Y, Furgeson DY. Cytoprotection against beta-amyloid (Aβ) peptide-mediated oxidative damage and autophagy by Keap1 RNAi in human glioma U87mg cells. Neurosci Res. 2015;94:70–8.

    Article  CAS  PubMed  Google Scholar 

  40. Bhattacharjee S, Dashwood RH. Epigenetic regulation of NRF2/KEAP1 by phytochemicals. Antioxidants. 2020;9(9):865.

    Article  CAS  PubMed Central  Google Scholar 

  41. Zimta A-A, Cenariu D, Irimie A, Magdo L, Nabavi SM, Atanasov AG, et al. The role of Nrf2 activity in cancer development and progression. Cancers. 2019;11(11):1755.

    Article  CAS  PubMed Central  Google Scholar 

  42. Sun W, Zhang W, Yu J, Lu Z, Yu J. Inhibition of Nrf2 might enhance the anti-tumor effect of temozolomide in glioma cells via inhibition of Ras/Raf/MEK signaling pathway. Int J Neurosci. 2021;131(10):975–83.

    Article  CAS  PubMed  Google Scholar 

  43. Liu J, Qin X, Ma W, Jia S, Zhang X, Yang X, et al. Corilagin induces apoptosis and autophagy in NRF2-addicted U251 glioma cell line. Mol Med Rep. 2021;23(5):1–10.

    Google Scholar 

  44. Zhou Y, Wang H-D, Zhu L, Cong Z-X, Li N, Ji X-J, et al. Knockdown of Nrf2 enhances autophagy induced by temozolomide in U251 human glioma cell line. Oncol Rep. 2013;29(1):394–400.

    Article  CAS  PubMed  Google Scholar 

  45. Li K, Ouyang L, He M, Luo M, Cai W, Tu Y, et al. IDH1 R132H mutation regulates glioma chemosensitivity through Nrf2 pathway. Oncotarget. 2017;8(17):28865.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mimura J, Kosaka K, Maruyama A, Satoh T, Harada N, Yoshida H, et al. Nrf2 regulates NGF mRNA induction by carnosic acid in T98G glioblastoma cells and normal human astrocytes. J Biochem. 2011;150(2):209–17.

    Article  CAS  PubMed  Google Scholar 

  47. Gao X, Guo N, Xu H, Pan T, Yan A, Mi Y, et al. Ibuprofen induces ferroptosis of glioblastoma cells via downregulation of nuclear factor erythroid 2-related factor 2 signaling pathway. Anticancer Drugs. 2020;31(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  48. Jia Y, Wang H-D, Wang Q, Ding H, Wu H-M, Pan H. GSH depletion and consequent AKT inhibition contribute to the Nrf2 knockdown-induced decrease in proliferation in glioblastoma U251 cells. Oncol Rep. 2017;37(4):2252–60.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang L, Wang H. FTY720 inhibits the Nrf2/ARE pathway in human glioblastoma cell lines and sensitizes glioblastoma cells to temozolomide. Pharmacol Rep. 2017;69(6):1186–93.

    Article  CAS  PubMed  Google Scholar 

  50. Choi E-O, Jeong J-W, Park C, Hong SH, Kim G-Y, Hwang H-J, et al. Baicalein protects C6 glial cells against hydrogen peroxide-induced oxidative stress and apoptosis through regulation of the Nrf2 signaling pathway. Int J Mol Med. 2016;37(3):798–806.

    Article  CAS  PubMed  Google Scholar 

  51. Wang G, Yang Q, Zheng C, Li D, Li J, Zhang F. Physiological Concentration of H 2 O 2 supports dopamine neuronal survival via activation of Nrf2 signaling in glial cells. Cell Mol Neurobiol. 2021;41(1):163–71.

    Article  CAS  PubMed  Google Scholar 

  52. Pan H, Wang Q, Niu W, Wu Q, Jia Y, Sun K, et al. Mel Aggravates Pyroptosis Induced by Temozolomide Through Inhibiting NRF2-are Pathway in Glioblastoma. 2020.

  53. Hu Z, Mi Y, Qian H, Guo N, Yan A, Zhang Y, et al. A Potential Mechanism of Temozolomide Resistance in Glioma-Ferroptosis. Front Oncol. 2020;10:897.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jumnongprakhon P, Govitrapong P, Tocharus C, Pinkaew D, Tocharus J. Melatonin protects methamphetamine-induced neuroinflammation through NF-κB and Nrf2 pathways in glioma cell line. Neurochem Res. 2015;40(7):1448–56.

    Article  CAS  PubMed  Google Scholar 

  55. Pan H, Wang H, Jia Y, Wang Q, Li L, Wu Q, et al. VPA and MEL induce apoptosis by inhibiting the Nrf2-ARE signaling pathway in TMZ-resistant U251 cells. Mol Med Rep. 2017;16(1):908–14.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang H, He J, Dai Z, Wang Z, Liang X, He F, et al. PDIA5 is Correlated with immune infiltration and predicts poor prognosis in gliomas. Front Immunol. 2021;12:19.

    Google Scholar 

  57. Kyani A, Tamura S, Yang S, Shergalis A, Samanta S, Kuang Y, et al. Discovery and Mechanistic Elucidation of a Class of PDI Inhibitors for the Treatment of Glioblastoma. ChemMedChem. 2018;13(2):164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shi L, Li H, Zhan Y. All-trans retinoic acid enhances temozolomide-induced autophagy in human glioma cells U251 via targeting Keap1/Nrf2/ARE signaling pathway. Oncol Lett. 2017;14(3):2709–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Qin X, Liu J, Pan D, Ma W, Cheng P, Jin F. Corilagin induces human glioblastoma U251 cell apoptosis by impeding activity of (immuno) proteasome. Oncol Rep. 2021;45(4):1–11.

    Article  CAS  Google Scholar 

  60. Guo Y, Wang C, Jiang M, Zhu H, Weng M, Sun L, et al. Baohuoside I via mTOR apoptotic signaling to inhibit glioma cell growth. Cancer Management and Research. 2020;12:11435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Amin AG, Jeong SW, Gillick JL, Sursal T, Murali R, Gandhi CD, et al. Targeting the mTOR pathway using novel ATP-competitive inhibitors, Torin1, Torin2 and XL388, in the treatment of glioblastoma. Int J Oncol. 2021;59(4):1–9.

    Article  CAS  Google Scholar 

  62. Nawaz J, Rasul A, Shah MA, Hussain G, Riaz A, Sarfraz I, et al. Cardamonin: A new player to fight cancer via multiple cancer signaling pathways. Life Sci. 2020;250:117591.

    Article  CAS  PubMed  Google Scholar 

  63. Sukumari-Ramesh S, Prasad N, Alleyne CH, Vender JR, Dhandapani KM. Overexpression of Nrf2 attenuates Carmustine-induced cytotoxicity in U87MG human glioma cells. BMC Cancer. 2015;15(1):1–10.

    Article  CAS  Google Scholar 

  64. Guo X-D, Ji J, Xue T-F, Sun Y-Q, Guo R-B, Cheng H, et al. FTY720 exerts anti-glioma effects by regulating the glioma microenvironment through increased CXCR4 internalization by glioma-associated microglia. Front Immunol. 2020;11:178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Takasaki T, Hagihara K, Satoh R, Sugiura R. More than just an immunosuppressant: the emerging role of FTY720 as a novel inducer of ROS and apoptosis. Oxid Med Cell Longev. 2018;2018:1–13.

    Article  CAS  Google Scholar 

  66. Wruck C, Claussen M, Fuhrmann G, Römer L, Schulz A, Pufe T, et al. Luteolin protects rat PC 12 and C6 cells against MPP+ induced toxicity via an ERK dependent Keapl-Nrf2-ARE pathway. Neuropsychiatric disorders an integrative approach: Springer; 2007. p. 57–67.

    Google Scholar 

  67. Sajadimajd S, Khazaei M. Oxidative stress and cancer: the role of Nrf2. Curr Cancer Drug Targets. 2018;18(6):538–57.

    Article  CAS  PubMed  Google Scholar 

  68. Escoll M, Lastra D, Robledinos-Antón N, Wandosell F, Antón IM, Cuadrado A. WIP modulates oxidative stress through NRF2/KEAP1 in glioblastoma cells. Antioxidants. 2020;9(9):773.

    Article  CAS  PubMed Central  Google Scholar 

  69. Kumari S, Badana AK, Malla R. Reactive oxygen species: a key constituent in cancer survival. Biomarker insights. 2018;13:1177271918755391.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang J, Liu P, Xin S, Wang Z, Li J. Nrf2 suppresses the function of dendritic cells to facilitate the immune escape of glioma cells. Exp Cell Res. 2017;360(2):66–73.

    Article  CAS  PubMed  Google Scholar 

  71. Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 2019;110(7):2080–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Godoy PR, Pour Khavari A, Rizzo M, Sakamoto-Hojo ET, Haghdoost S. Targeting NRF2, regulator of antioxidant system, to sensitize glioblastoma neurosphere cells to radiation-induced oxidative stress. Oxid Med Cell Longev. 2020;2020:1–17.

    Article  CAS  Google Scholar 

  73. Zhou J, Zhang F, Chen J, Zhang S, Wang H. Chlorogenic acid inhibits human glioma U373 cell progression via regulating the SRC/MAPKs signal pathway: based on network pharmacology analysis. Drug Des Dev Ther. 2021;15:1369.

    Article  Google Scholar 

  74. Cong Z-X, Wang H-D, Wang J-W, Zhou Y, Pan H, Zhang D-D, et al. ERK and PI3K signaling cascades induce Nrf2 activation and regulate cell viability partly through Nrf2 in human glioblastoma cells. Oncol Rep. 2013;30(2):715–22.

    Article  CAS  PubMed  Google Scholar 

  75. Haas B, Klinger V, Keksel C, Bonigut V, Kiefer D, Caspers J, et al. Inhibition of the PI3K but not the MEK/ERK pathway sensitizes human glioma cells to alkylating drugs. Cancer Cell Int. 2018;18(1):1–14.

    Article  CAS  Google Scholar 

  76. Escoll M, Lastra D, Pajares M, Robledinos-Antón N, Rojo AI, Fernández-Ginés R, et al. Transcription factor NRF2 uses the Hippo pathway effector TAZ to induce tumorigenesis in glioblastomas. Redox Biol. 2020;30:101425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ma L, Liu J, Zhang X, Qi J, Yu W, Gu Y. p38 MAPK-dependent Nrf2 induction enhances the resistance of glioma cells against TMZ. Med Oncol. 2015;32(3):69.

    Article  PubMed  CAS  Google Scholar 

  78. Jia Y, Wang H, Wang Q, Ding H, Wu H, Pan H. Silencing Nrf2 impairs glioma cell proliferation via AMPK-activated mTOR inhibition. Biochem Biophys Res Commun. 2016;469(3):665–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haroon Khan or Marzieh Lotfi.

Ethics declarations

Conflict on interest

The authors of this article declear no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahcheraghi, S.H., Salemi, F., Alam, W. et al. The Role of NRF2/KEAP1 Pathway in Glioblastoma: Pharmacological Implications. Med Oncol 39, 91 (2022). https://doi.org/10.1007/s12032-022-01693-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01693-0

Keywords

Navigation