Skip to main content

Advertisement

Log in

A 12-chemokine gene signature is associated with the enhanced immunogram scores and is relevant for precision immunotherapy

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Advances in the understanding of checkpoint blockade immunotherapy have suggested that boosting the cancer-immunity cycle (CIC) can help induce regression of tumors. However, good efficacy only occurs in a subset of patients. Predictive biomarkers that can reflect the tumor microenvironment (TME) and CIC may have great potential. More recently, the presence of intratumoral tertiary lymphoid structures (TLSs) has also been correlated with clinical benefit in patients. In this study, we comprehensively measured the immunogram scores (IGSs) for the CIC and explored the associations between immunological and mutational features and a 12-chemokine metagene TLS signature in data from The Cancer Genome Atlas (TCGA). Three immunotherapy datasets were further applied for validation. In the TCGA dataset, we observed that the 12-chemokine TLS signature score was positively associated with the enhanced IGSs as represented by increased tumor mutational burden (TMB) and neoantigen burden (TNB), enriched immune cell (IC) infiltration, and elevated cytolytic activity and checkpoint expression. Specifically, in bladder cancer and melanoma, the high 12-chemokine TLS signature score was found to potentially reflect an expanded cancer-immunity status characterized by high TNB and an immune-inflamed feature. The predictive and prognostic value of the 12-chemokine TLS signature was further validated in several immunotherapy datasets. The score of the 12-chemokine TLS signature may serve as a pancancer marker of the immune-active phenotype. The 12-chemokine TLS signature showed promise as a predictive and prognostic biomarker for ICB efficacy, especially in melanoma and bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data analyzed in our study were obtained from publicly available, online datasets. The raw data of this study are derived from the TCGA database and GEO data portal, as mentioned in the Materials and Methods.

Consent for publication

Not applicable.

References

  1. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707–23.

    Article  CAS  Google Scholar 

  2. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 2019;19(3):133–50.

    Article  CAS  Google Scholar 

  3. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, Felip E, van den Heuvel MM, Ciuleanu TE, Badin F, et al. First-line nivolumab in Stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376(25):2415–26.

    Article  CAS  Google Scholar 

  4. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.

    Article  CAS  Google Scholar 

  5. Kim SY, Halmos B. Choosing the best first-line therapy: NSCLC with no actionable oncogenic driver. Lung Cancer Manag. 2020;9(3):LMT36.

    Article  CAS  Google Scholar 

  6. Gettinger SN, Choi J, Mani N, Sanmamed MF, Datar I, Sowell R, Du VY, Kaftan E, Goldberg S, Dong W, et al. A dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers. Nat Commun. 2018;9(1):3196.

    Article  CAS  Google Scholar 

  7. Ott PA, Bang YJ, Piha-Paul SA, Razak ARA, Bennouna J, Soria JC, Rugo HS, Cohen RB, O’Neil BH, Mehnert JM, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol. 2019;37(4):318–27.

    Article  Google Scholar 

  8. Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, Hodi FS, Martin-Algarra S, Mandal R, Sharfman WH, et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell. 2017;171(4):934-949.e916.

    Article  CAS  Google Scholar 

  9. Sautes-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. 2019;19(6):307–25.

    Article  CAS  Google Scholar 

  10. Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, Johansson I, Phung B, Harbst K, Vallon-Christersson J, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 2020;577(7791):561–5.

    Article  CAS  Google Scholar 

  11. Coppola D, Nebozhyn M, Khalil F, Dai H, Yeatman T, Loboda A, Mule JJ. Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling. Am J Pathol. 2011;179(1):37–45.

    Article  Google Scholar 

  12. Prabhakaran S, Rizk VT, Ma Z, Cheng CH, Berglund AE, Coppola D, Khalil F, Mule JJ, Soliman HH. Evaluation of invasive breast cancer samples using a 12-chemokine gene expression score: correlation with clinical outcomes. Breast Cancer Res. 2017;19(1):71.

    Article  Google Scholar 

  13. Messina JL, Fenstermacher DA, Eschrich S, Qu X, Berglund AE, Lloyd MC, Schell MJ, Sondak VK, Weber JS, Mule JJ. 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep. 2012;2:765.

    Article  Google Scholar 

  14. Danaher P, Warren S, Lu R, Samayoa J, Sullivan A, Pekker I, Wallden B, Marincola FM, Cesano A. Pan-cancer adaptive immune resistance as defined by the Tumor Inflammation Signature (TIS): results from The Cancer Genome Atlas (TCGA). J Immunother Cancer. 2018;6(1):63.

    Article  Google Scholar 

  15. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.

    Article  Google Scholar 

  16. Smyth MJ, Ngiow SF, Ribas A, Teng MW. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 2016;13(3):143–58.

    Article  CAS  Google Scholar 

  17. Uno T, Takeda K, Kojima Y, Yoshizawa H, Akiba H, Mittler RS, Gejyo F, Okumura K, Yagita H, Smyth MJ. Eradication of established tumors in mice by a combination antibody-based therapy. Nat Med. 2006;12(6):693–8.

    Article  CAS  Google Scholar 

  18. Karasaki T, Nagayama K, Kuwano H, Nitadori JI, Sato M, Anraku M, Hosoi A, Matsushita H, Morishita Y, Kashiwabara K, et al. An immunogram for the cancer-immunity cycle: towards personalized immunotherapy of lung cancer. J Thorac Oncol. 2017;12(5):791–803.

    Article  Google Scholar 

  19. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, et al. The immune landscape of cancer. Immunity. 2018;48(4):812-830.e814.

    Article  CAS  Google Scholar 

  20. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita JL, Cubas R, et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544–8.

    Article  CAS  Google Scholar 

  21. Ulloa-Montoya F, Louahed J, Dizier B, Gruselle O, Spiessens B, Lehmann FF, Suciu S, Kruit WH, Eggermont AM, Vansteenkiste J, Brichard VG. Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy. J Clin Oncol. 2013;31(19):2388–95.

    Article  CAS  Google Scholar 

  22. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z. Pan-cancer immunogenomic analyses reveal genotype–immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18(1):248–62.

    Article  CAS  Google Scholar 

  23. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462(7269):108–12.

    Article  CAS  Google Scholar 

  24. Xu L, Deng C, Pang B, Zhang X, Liu W, Liao G, Yuan H, Cheng P, Li F, Long Z, et al. TIP: a web server for resolving tumor immunophenotype profiling. Cancer Res. 2018;78(23):6575–80.

    Article  CAS  Google Scholar 

  25. Zhu J, Armstrong AJ, Friedlander TW, Kim W, Pal SK, George DJ, Zhang T. Biomarkers of immunotherapy in urothelial and renal cell carcinoma: PD-L1, tumor mutational burden, and beyond. J Immunother Cancer. 2018;6(1):4.

    Article  Google Scholar 

  26. Ye Y, Jing Y, Li L, Mills GB, Diao L, Liu H, Han L. Sex-associated molecular differences for cancer immunotherapy. Nat Commun. 2020;11(1):1779.

    Article  CAS  Google Scholar 

  27. Huang Z, Chen B, Liu X, Li H, Xie L, Gao Y, Duan R, Li Z, Zhang J, Zheng Y, Su W. Effects of sex and aging on the immune cell landscape as assessed by single-cell transcriptomic analysis. Proc Natl Acad Sci USA. 2021;118(33):e2023216118.

    Article  CAS  Google Scholar 

  28. Conforti F, Pala L, Bagnardi V, De Pas T, Martinetti M, Viale G, Gelber RD, Goldhirsch A. Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol. 2018;19(6):737–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the professional English-speaking editors at American Journal Experts for assistance with improving the quality of the language.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

XL, LY: Conceptualization. ZW: Acquisition of the data. XL, XL: Formal analysis and investigation. XL: Drafting of the manuscript. KO, ZW: Statistical analysis. LY: Supervision. All authors: Critical revision of the manuscript for important intellectual content.

Corresponding author

Correspondence to Lin Yang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Ethical approval

Not necessary.

Informed consent

Not necessary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1331 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wan, Z., Liu, X. et al. A 12-chemokine gene signature is associated with the enhanced immunogram scores and is relevant for precision immunotherapy. Med Oncol 39, 43 (2022). https://doi.org/10.1007/s12032-021-01635-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01635-2

Keywords

Navigation