Skip to main content
Log in

Association of ERG/PTEN status with biochemical recurrence after radical prostatectomy for clinically localized prostate cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

We have previously demonstrated a significant correlative relationship between PTEN deletion and ERG rearrangement, both in the development of clinically localized prostate cancers and metastases. Herein, we evaluate the cooperative role of ERG and PTEN in oncological outcomes after radical prostatectomy for clinically localized prostate cancer. We evaluated ERG and PTEN status using three previously described cohorts. The first cohort included 235 clinically localized prostate cancer cases represented on tissue microarrays (TMA), evaluated using previously validated FISH assays for ERG and PTEN. The second cohort included 167 cases of clinically localized prostate cancer on TMAs evaluated for PTEN by FISH, and for PTEN and ERG by dual IHC. The third cohort comprised 59 clinically localized prostate cancer cases assessed by array comparative genomic hybridization (aCGH). Kaplan–Meir plots and long rank tests were used to assess the association of ERG and PTEN status with biochemical recurrence after radical prostatectomy for clinically localized prostate cancer. Of the 317 cases eligible for analyses with evaluable ERG and PTEN status, 88 (27.8%) patients developed biochemical recurrence over a median follow-up of 5.7 years. Overall, 45% (142/317) of cases demonstrated ERG rearrangement and 20% (62/317) of cases demonstrated PTEN loss. Hemizygous and homozygous deletion of PTEN was seen in 10% (18/175) and 3% (5/175) of ERG-negative cases, respectively. In contrast, hemizygous and homozygous deletion of PTEN was seen in 11% (15/142) and 17% (24/123) of ERG-positive cases, respectively. PTEN loss (heterozygous or homozygous) was significantly associated with shorter time to biochemical recurrence compared to no PTEN loss (p < 0.001). However, ERG rearrangement versus no rearrangement was not associated with time to PSA recurrence (p = 0.15). Patients who exhibited ERG rearrangement and loss of PTEN had no significant difference in time to recurrence compared to patients with wild-type ERG and loss of PTEN (p = 0.30). Our findings confirm a mutual cooperative role of ERG and PTEN in the pathogenesis of prostate cancer, particularly for homozygous PTEN deletion. ERG did not stratify outcome either alone or in combination with PTEN in this cohort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roychowdhury S, Iyer MK, Robinson DR, et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med. 2011;3:111ra121–1. https://doi.org/10.1126/scitranslmed.3003161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jiang B-H, Liu L-Z. PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta. 2008;1784:150–8. https://doi.org/10.1016/j.bbapap.2007.09.008.

    Article  CAS  PubMed  Google Scholar 

  3. Chalhoub N, Baker SJ. PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol. 2009;4:127–50. https://doi.org/10.1146/annurev.pathol.4.110807.092311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morgan TM, Koreckij TD, Corey E. Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway. Curr Cancer Drug Targets. 2009;9:237–49.

    Article  CAS  Google Scholar 

  5. Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–8. https://doi.org/10.1126/science.1117679.

    Article  CAS  PubMed  Google Scholar 

  6. Tomlins SA, Mehra R, Rhodes DR, et al. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res. 2006;66:3396–400. https://doi.org/10.1158/0008-5472.CAN-06-0168.

    Article  CAS  PubMed  Google Scholar 

  7. Tomlins SA, Laxman B, Dhanasekaran SM, et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature. 2007;448:595–9. https://doi.org/10.1038/nature06024.

    Article  CAS  PubMed  Google Scholar 

  8. Helgeson BE, Tomlins SA, Shah N, et al. Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res. 2008;68:73–80. https://doi.org/10.1158/0008-5472.CAN-07-5352.

    Article  CAS  PubMed  Google Scholar 

  9. Mehra R, Tomlins SA, Shen R, et al. Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod Pathol. 2007;20:538–44. https://doi.org/10.1038/modpathol.3800769.

    Article  CAS  PubMed  Google Scholar 

  10. Mehra R, Tomlins SA, Yu J, et al. Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. Cancer Res. 2008;68:3584–90. https://doi.org/10.1158/0008-5472.CAN-07-6154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tomlins SA, Laxman B, Varambally S, et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia. 2008;10:177–88.

    Article  CAS  Google Scholar 

  12. Klezovitch O, Risk M, Coleman I, et al. A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci USA. 2008;105:2105–10. https://doi.org/10.1073/pnas.0711711105.

    Article  PubMed  Google Scholar 

  13. Carver BS, Tran J, Gopalan A, et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet. 2009;41:619–24. https://doi.org/10.1038/ng.370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zong Y, Xin L, Goldstein AS, et al. ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc Natl Acad Sci USA. 2009;106:12465–70. https://doi.org/10.1073/pnas.0905931106.

    Article  PubMed  Google Scholar 

  15. King JC, Xu J, Wongvipat J, et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet. 2009;41:524–6. https://doi.org/10.1038/ng.371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krohn A, Diedler T, Burkhardt L, et al. Genomic deletion of PTEN is associated with tumor progression and early PSA recurrence in ERG fusion-positive and fusion-negative prostate cancer. Am J Pathol. 2012;181:401–12. https://doi.org/10.1016/j.ajpath.2012.04.026.

    Article  CAS  PubMed  Google Scholar 

  17. Han B, Mehra R, Lonigro RJ, et al. Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. Mod Pathol. 2009;22:1083–93. https://doi.org/10.1038/modpathol.2009.69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoshimoto M, Ding K, Sweet JM, et al. PTEN losses exhibit heterogeneity in multifocal prostatic adenocarcinoma and are associated with higher Gleason grade. Mod Pathol. 2013;26:435–47. https://doi.org/10.1038/modpathol.2012.162.

    Article  CAS  PubMed  Google Scholar 

  19. Bismar TA, Yoshimoto M, Vollmer RT, et al. PTEN genomic deletion is an early event associated with ERG gene rearrangements in prostate cancer. BJU Int. 2011;107:477–85. https://doi.org/10.1111/j.1464-410X.2010.09470.x.

    Article  PubMed  Google Scholar 

  20. Bhalla R, Kunju LP, Tomlins SA, et al. Novel dual-color immunohistochemical methods for detecting ERG-PTEN and ERG-SPINK1 status in prostate carcinoma. Mod Pathol. 2013;26:835–48. https://doi.org/10.1038/modpathol.2012.234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Korshunov A, Sycheva R, Gorelyshev S, et al. Clinical utility of fluorescence in situ hybridization (FISH) in nonbrainstem glioblastomas of childhood. Mod Pathol. 2005;18:1258–63. https://doi.org/10.1038/modpathol.3800415.

    Article  CAS  PubMed  Google Scholar 

  22. Yoshimoto M, Cunha IW, Coudry RA, et al. FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome. Br J Cancer. 2007;97:678–85. https://doi.org/10.1038/sj.bjc.6603924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoshimoto M, Joshua AM, Cunha IW, et al. Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod Pathol. 2008;21:1451–60. https://doi.org/10.1038/modpathol.2008.96.

    Article  CAS  PubMed  Google Scholar 

  24. Grasso CS, Wu Y-M, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487:239–43. https://doi.org/10.1038/nature11125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grasso CS, Cani AK, Hovelson DH, et al. Integrative molecular profiling of routine clinical prostate cancer specimens. Ann Oncol. 2015;26:1110–8. https://doi.org/10.1093/annonc/mdv134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell. 2000;100:387–90.

    Article  Google Scholar 

  27. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer. 2008;8:497–511. https://doi.org/10.1038/nrc2402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bismar TA, Yoshimoto M, Duan Q, et al. Interactions and relationships of PTEN, ERG, SPINK1 and AR in castration-resistant prostate cancer. Histopathology. 2012;60:645–52. https://doi.org/10.1111/j.1365-2559.2011.04116.x.

    Article  PubMed  Google Scholar 

  29. Liu S, Yoshimoto M, Trpkov K, et al. Detection of ERG gene rearrangements and PTEN deletions in unsuspected prostate cancer of the transition zone. Cancer Biol Ther. 2011;11:562–6.

    Article  Google Scholar 

  30. Lahdensuo K, Erickson A, Saarinen I, et al. Loss of PTEN expression in ERG-negative prostate cancer predicts secondary therapies and leads to shorter disease-specific survival time after radical prostatectomy. Mod Pathol. 2016;29:1565–74. https://doi.org/10.1038/modpathol.2016.154.

    Article  CAS  PubMed  Google Scholar 

  31. Chaux A, Peskoe SB, Gonzalez-Roibon N, et al. Loss of PTEN expression is associated with increased risk of recurrence after prostatectomy for clinically localized prostate cancer. Mod Pathol. 2012;25:1543–9. https://doi.org/10.1038/modpathol.2012.104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lotan TL, Gumuskaya B, Rahimi H, et al. Cytoplasmic PTEN protein loss distinguishes intraductal carcinoma of the prostate from high-grade prostatic intraepithelial neoplasia. Mod Pathol. 2013;26:587–603. https://doi.org/10.1038/modpathol.2012.201.

    Article  CAS  PubMed  Google Scholar 

  33. Trotman LC, Niki M, Dotan ZA, et al. PTEN dose dictates cancer progression in the prostate. PLoS Biol. 2003;1:E59. https://doi.org/10.1371/journal.pbio.0000059.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Udager AM, Alva A, Mehra R. Current and proposed molecular diagnostics in a genitourinary service line laboratory at a tertiary clinical institution. Cancer J. 2014;20:29–42. https://doi.org/10.1097/PPO.0000000000000017.

    Article  CAS  PubMed  Google Scholar 

  35. Brenner JC, Ateeq B, Li Y, et al. Mechanistic rationale for inhibition of poly(ADP-Ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell. 2011;19:664–78. https://doi.org/10.1016/j.ccr.2011.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Feng FY, Brenner JC, Hussain M, et al. Molecular pathways: targeting ETS gene fusions in cancer. Clin Cancer Res. 2014;20:4442–8. https://doi.org/10.1158/1078-0432.CCR-13-0275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hussain M, Daignault-Newton S, Twardowski PW, et al. Targeting androgen receptor and DNA repair in metastatic castration-resistant prostate cancer: results from NCI 9012. J Clin Oncol. 2018;36(10):991–9.

    Article  Google Scholar 

  38. Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275:1943–7.

    Article  CAS  Google Scholar 

  39. Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol. 2004;22:2954–63. https://doi.org/10.1200/JCO.2004.02.141.

    Article  CAS  PubMed  Google Scholar 

  40. Arkenau H-T, Mateo J, Lemech CR, et al. A phase I/II, first-in-human dose-escalation study of GSK2636771 in patients (pts) with PTEN-deficient advanced tumors. ASCO Meeting Abstracts. 2014;32:2514.

  41. Blackman SC, Gainer SD, Suttle BB, et al. Abstract 1752: a phase I/IIa, first time in human, open-label dose-escalation study of GSK2636771 in subjects with advanced solid tumors with PTEN deficiency. Cancer Res. 2012;72:1752–2. https://doi.org/10.1158/1538-7445.AM2012-1752.

    Article  Google Scholar 

  42. Jamaspishvili T, Berman DM, Ross AE, et al. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol. 2018;15(4):222–34.

    Article  CAS  Google Scholar 

Download references

Funding

S.S.S. is supported by the Urology Care Foundation and the Prostate Cancer Foundation. S.A.T. is supported by the A. Alfred Taubman Medical Institute and the Prostate Cancer Foundation. Supported in part by the National Institutes of Health U01 CA214170 to A.M.C. and the University of Michigan Prostate Specialized Program of Research Excellence [S.P.O.R.E.] P50 CA186786-05. D.E.S. has been supported by the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rohit Mehra or Scott A. Tomlins.

Ethics declarations

Conflict of interest

The University of Michigan has been issued a patent on the detection of ETS gene fusions in prostate cancer, in which R.M., S.A.T., and A.M.C. are listed as co-inventors. The University of Michigan has licensed the diagnostic field of use to Gen-Probe, Inc. (Bedford, MA), which has sublicensed some rights to Ventana Medical Systems. S.A.T. serves as a consultant to and has received honoraria from Ventana Medical Systems. A.M.C. has served as a consultant for Gen-Probe, Inc. and Ventana Medical Systems. All other authors have no disclosures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehra, R., Salami, S.S., Lonigro, R. et al. Association of ERG/PTEN status with biochemical recurrence after radical prostatectomy for clinically localized prostate cancer. Med Oncol 35, 152 (2018). https://doi.org/10.1007/s12032-018-1212-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-018-1212-6

Keywords

Navigation