Skip to main content

Advertisement

Log in

STAT3 polymorphism rs4796793 may be a predictive factor of tumor response to multiple tyrosine kinase inhibitors in metastatic renal cell carcinoma in Japanese population

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Signal transducer and activator of transcription (STAT) 3 is a key factor in multiple tyrosine kinase inhibitor (mTKI)-induced growth inhibition and apoptosis of renal cell carcinoma (RCC) cells. This study aimed to identify associations between single-nucleotide polymorphisms (SNPs) in the STAT3 gene and tumor response to mTKIs in patients with metastatic RCC (mRCC). Seventy-one patients with clear cell RCC treated with any mTKI were retrospectively genotyped to elucidate a potential association between STAT3 SNPs and overall best response to drugs. Of 50 patients included for analysis, a partial or complete response was observed in 17. A significant association was found between rs4796793 alleles and tumor response [G vs. C, odds ratio (OR) 3.25, 95 % confidence interval (CI) 1.30–8.07]. There were a higher percentage of responders with the C/C genotype at rs4796793 than with the G/C + G/G genotypes (OR 4.46, 95 % CI 1.31–15.28). Time-to-event analysis demonstrated a statistically significant difference between patients with the CC genotype and those with G/C + G/G genotypes in time-to-treatment response, but not in progression-free survival or time-to-treatment failure. The rs4796793 genotype is a novel predictive factor of the response to mTKIs in patients with mRCC. However, prospective translational trials with larger patient cohorts are required to confirm these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29. doi:10.3322/caac.21254.

    Article  PubMed  Google Scholar 

  2. Philips GK, Atkins MB. New agents and new targets for renal cell carcinoma. American Society of Clinical Oncology educational book/ASCO American Society of Clinical Oncology Meeting. 2014:e222–7. doi:10.14694/EdBook_AM.2014.34.e222.

  3. Darnell JE Jr. STATs and gene regulation. Science. 1997;277(5332):1630–5. doi:10.1126/science.277.5332.1630.

    Article  CAS  PubMed  Google Scholar 

  4. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, et al. Stat3 as an oncogene. Cell. 1999;98(3):295–303.

    Article  CAS  PubMed  Google Scholar 

  5. Miyoshi K, Takaishi M, Nakajima K, Ikeda M, Kanda T, Tarutani M, et al. Stat3 as a therapeutic target for the treatment of psoriasis: a clinical feasibility study with STA-21, a Stat3 inhibitor. J Invest Dermatol. 2011;131(1):108–17. doi:10.1038/jid.2010.255.

    Article  CAS  PubMed  Google Scholar 

  6. Yu H, Jove R. The STATs of cancer—new molecular targets come of age. Nat Rev Cancer. 2004;4(2):97–105. doi:10.1038/nrc1275.

    Article  CAS  PubMed  Google Scholar 

  7. Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H. Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res. 2009;69(6):2506–13. doi:10.1158/0008-5472.can-08-4323.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Chen KF, Tai WT, Liu TH, Huang HP, Lin YC, Shiau CW, et al. Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma cells through the inhibition of STAT3. Clin Cancer Res. 2010;16(21):5189–99. doi:10.1158/1078-0432.ccr-09-3389.

    Article  CAS  PubMed  Google Scholar 

  9. Yuan H, Cai P, Li Q, Wang W, Sun Y, Xu Q, et al. Axitinib augments antitumor activity in renal cell carcinoma via STAT3-dependent reversal of myeloid-derived suppressor cell accumulation. Biomed Pharmacother. 2014;68(6):751–6. doi:10.1016/j.biopha.2014.07.002.

    Article  CAS  PubMed  Google Scholar 

  10. Eto M, Kamba T, Miyake H, Fujisawa M, Kamai T, Uemura H, et al. STAT3 polymorphism can predict the response to interferon-alpha therapy in patients with metastatic renal cell carcinoma. Eur Urol. 2013;63(4):745–52. doi:10.1016/j.eururo.2012.09.052.

    Article  CAS  PubMed  Google Scholar 

  11. Ito N, Eto M, Nakamura E, Takahashi A, Tsukamoto T, Toma H, et al. STAT3 polymorphism predicts interferon-alfa response in patients with metastatic renal cell carcinoma. J Clin Oncol. 2007;25(19):2785–91. doi:10.1200/jco.2006.09.8897.

    Article  CAS  PubMed  Google Scholar 

  12. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48(3):452–8. doi:10.1038/bmt.2012.244.

    Article  CAS  Google Scholar 

  13. Wake MS, Watson CJ. STAT3 the oncogene—still eluding therapy? FEBS J. 2015;282(14):2600–11. doi:10.1111/febs.13285.

    Article  CAS  PubMed  Google Scholar 

  14. Jarnicki A, Putoczki T, Ernst M. Stat3: linking inflammation to epithelial cancer—more than a “gut” feeling? Cell Div. 2010;5:14. doi:10.1186/1747-1028-5-14.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Levy DE, Darnell JE Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3(9):651–62. doi:10.1038/nrm909.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao C, Li H, Lin HJ, Yang S, Lin J, Liang G. Feedback activation of STAT3 as a cancer drug-resistance mechanism. Trends Pharmacol Sci. 2015;. doi:10.1016/j.tips.2015.10.001.

    PubMed  Google Scholar 

  17. Guo C, Yang G, Khun K, Kong X, Levy D, Lee P, et al. Activation of Stat3 in renal tumors. Am J Transl Res. 2009;1(3):283–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Wendt MK, Balanis N, Carlin CR, Schiemann WP. STAT3 and epithelial–mesenchymal transitions in carcinomas. Jak-Stat. 2014;3(1):e28975. doi:10.4161/jkst.28975.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Xiong H, Hong J, Du W, Lin YW, Ren LL, Wang YC, et al. Roles of STAT3 and ZEB1 proteins in E-cadherin down-regulation and human colorectal cancer epithelial–mesenchymal transition. J Biol Chem. 2012;287(8):5819–32. doi:10.1074/jbc.M111.295964.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Tan FH, Putoczki TL, Stylli SS, Luwor RB. The role of STAT3 signaling in mediating tumor resistance to cancer therapy. Curr Drug Targets. 2014;15(14):1341–53.

    Article  CAS  PubMed  Google Scholar 

  21. Tania M, Khan MA, Fu J. Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer. Tumour Biol. 2014;35(8):7335–42. doi:10.1007/s13277-014-2163-y.

    Article  CAS  PubMed  Google Scholar 

  22. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. doi:10.1038/nrc3239.

    Article  CAS  PubMed  Google Scholar 

  23. Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007;13(1):84–8. doi:10.1038/nm1517.

    Article  CAS  PubMed  Google Scholar 

  24. Marzec M, Zhang Q, Goradia A, Raghunath PN, Liu X, Paessler M, et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci USA. 2008;105(52):20852–7. doi:10.1073/pnas.0810958105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Thompson RH, Dong H, Kwon ED. Implications of B7-H1 expression in clear cell carcinoma of the kidney for prognostication and therapy. Clin Cancer Res. 2007;13(2 Pt 2):709s–15s. doi:10.1158/1078-0432.ccr-06-1868.

    Article  CAS  PubMed  Google Scholar 

  26. Jilaveanu LB, Shuch B, Zito CR, Parisi F, Barr M, Kluger Y, et al. PD-L1 expression in clear cell renal cell carcinoma: an analysis of nephrectomy and sites of metastases. J Cancer. 2014;5(3):166–72. doi:10.7150/jca.8167.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Massari F, Santoni M, Ciccarese C, Santini D, Alfieri S, Martignoni G, et al. PD-1 blockade therapy in renal cell carcinoma: current studies and future promises. Cancer Treat Rev. 2015;41(2):114–21. doi:10.1016/j.ctrv.2014.12.013.

    Article  CAS  PubMed  Google Scholar 

  28. Poprach A, Pavlik T, Melichar B, Puzanov I, Dusek L, Bortlicek Z, et al. Skin toxicity and efficacy of sunitinib and sorafenib in metastatic renal cell carcinoma: a national registry-based study. Ann Oncol. 2012;23(12):3137–43. doi:10.1093/annonc/mds145.

    Article  CAS  PubMed  Google Scholar 

  29. Yamamoto K, Shinomiya K, Ioroi T, Hirata S, Harada K, Suno M, et al. Association of single nucleotide polymorphisms in STAT3 with hand–foot skin reactions in patients with metastatic renal cell carcinoma treated with multiple tyrosine kinase inhibitors: a retrospective analysis in Japanese patients. Target Oncol. 2015;. doi:10.1007/s11523-015-0382-9.

    Google Scholar 

  30. Mizuno T, Fukudo M, Fukuda T, Terada T, Dong M, Kamba T, et al. The effect of ABCG2 genotype on the population pharmacokinetics of sunitinib in patients with renal cell carcinoma. Ther Drug Monit. 2014;36(3):310–6. doi:10.1097/ftd.0000000000000025.

    Article  CAS  PubMed  Google Scholar 

  31. Teo YL, Wee HL, Chue XP, Chau NM, Tan MH, Kanesvaran R, et al. Effect of the CYP3A5 and ABCB1 genotype on exposure, clinical response and manifestation of toxicities from sunitinib in Asian patients. Pharmacogenomics J. 2015;. doi:10.1038/tpj.2015.13.

    PubMed  Google Scholar 

  32. van der Veldt AA, Eechoute K, Gelderblom H, Gietema J, Guchelaar HJ, van Erp NP, et al. Genetic polymorphisms associated with a prolonged progression-free survival in patients with metastatic renal cell cancer treated with sunitinib. Clin Cancer Res. 2011;17(3):620–9. doi:10.1158/1078-0432.ccr-10-1828.

    Article  PubMed  Google Scholar 

  33. Houk BE, Bello CL, Poland B, Rosen LS, Demetri GD, Motzer RJ. Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother Pharmacol. 2010;66(2):357–71. doi:10.1007/s00280-009-1170-y.

    Article  CAS  PubMed  Google Scholar 

  34. Noda S, Otsuji T, Baba M, Yoshida T, Kageyama S, Okamoto K, et al. Assessment of sunitinib-induced toxicities and clinical outcomes based on therapeutic drug monitoring of sunitinib for patients with renal cell carcinoma. Clin Genitourin Cancer. 2015;13(4):350–8. doi:10.1016/j.clgc.2015.01.007.

    Article  PubMed  Google Scholar 

  35. Terada T, Noda S, Inui K. Management of dose variability and side effects for individualized cancer pharmacotherapy with tyrosine kinase inhibitors. Pharmacol Ther. 2015;152:125–34. doi:10.1016/j.pharmthera.2015.05.009.

    Article  CAS  PubMed  Google Scholar 

  36. Teo YL, Chue XP, Chau NM, Tan MH, Kanesvaran R, Wee HL, et al. Association of drug exposure with toxicity and clinical response in metastatic renal cell carcinoma patients receiving an attenuated dosing regimen of sunitinib. Target Oncol. 2014;. doi:10.1007/s11523-014-0349-2.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by Foundation for Promotion of Cancer Research in Japan and Kurozumi Medical Foundation. The authors would like to thank Enago (www.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Yamamoto.

Ethics declarations

Conflict of interest

H. Miyake, K. Harada, and M. Fujisawa have received lecture fees from Pfizer, while the other authors disclosed no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, K., Ioroi, T., Kanaya, K. et al. STAT3 polymorphism rs4796793 may be a predictive factor of tumor response to multiple tyrosine kinase inhibitors in metastatic renal cell carcinoma in Japanese population. Med Oncol 33, 24 (2016). https://doi.org/10.1007/s12032-016-0733-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0733-0

Keywords

Navigation