Skip to main content

Advertisement

Log in

p16 Methylation is associated with chemosensitivity to fluorouracil in patients with advanced gastric cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

No effective biomarkers have been confirmed to predict chemosensitivity for patients with gastric cancer. The purpose of this study was to investigate whether DNA methylation is associated with chemosensitivity in patients with gastric cancer. Tumors and matched non-tumor biopsy tissues collected from 134 advanced gastric cancer (AGC) patients prior to fluorouracil-based chemotherapy were retrospectively analyzed. The methylation status of p16, E-cadherin (CDH1), MGMT (O-6-methylguanine-DNA methyltransferase), and human mutL homolog 1 (hMLH1) was evaluated using a Methylight assay, and the association between p16 methylation and the sensitivity of 5-fluorouracil in cell lines was determined by in vitro assay. The methylation of p16 (17.9 vs. 0 %, P = 0.002), CDH1 (20.9 vs. 2.2 %, P < 0.001), MGMT (17.9 vs. 0 %, P = 0.052), and hMLH1 (14.9 vs. 2.2 %, P = 0.024) was more common in gastric cancer tissues (n = 134) than in non-tumor tissues (n = 46). For all patients, a reverse correlation was only found between p16 methylation and clinical response (P = 0.017), which suggested that p16 methylation might be associated with chemosensitivity of fluorouracil in gastric cancer patients. Results from in vitro experiments demonstrated that p16 methylation was closely correlated with the sensitivity of 5-fluorouracil in gastric cancer cells. The present results indicated that the methylation of p16, CDH1, MGMT, and hMLH1 was both frequent and specific in gastric cancer tissues. p16 Methylation might be used to predict chemosensitivity of fluorouracil for patients with AGC when validated in large samples in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  2. Pozzo C, Barone C. Is there an optimal chemotherapy regimen for the treatment of advanced gastric cancer that will provide a platform for the introduction of new biological agents? Oncologist. 2008;13(7):794–806.

    Article  CAS  PubMed  Google Scholar 

  3. Wagner AD, Unverzagt S, Grothe W, Kleber G, Grothey A, Haerting J, Fleig WE. Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev. 2010;3:CD004064.

    PubMed  Google Scholar 

  4. Price TJ, Shapiro JD, Segelov E, Karapetis CS, Pavlakis N, Van Cutsem E, Shah MA, Kang YK, Tebbutt NC. Management of advanced gastric cancer. Expert Rev Gastroenterol Hepatol. 2012;6(2):199–208.

    Article  CAS  PubMed  Google Scholar 

  5. Popa EC, Shah MA. Capecitabine in the treatment of esophageal and gastric cancers. Expert Opin Investig Drugs. 2013;22(12):1645–57.

    Article  CAS  PubMed  Google Scholar 

  6. Fukuda H, Takiguchi N, Koda K, Oda K, Seike K, Miyazaki M. Thymidylate synthase and dihydropyrimidine dehydrogenase are related to histological effects of 5-fluorouracil and cisplatin neoadjuvant chemotherapy for primary gastric cancer patients. Cancer Invest. 2006;24(3):235–41.

    Article  CAS  PubMed  Google Scholar 

  7. Nishina T, Hyodo I, Miyaike J, Inaba T, Suzuki S, Shiratori Y. The ratio of thymidine phosphorylase to dihydropyrimidine dehydrogenase in tumour tissues of patients with metastatic gastric cancer is predictive of the clinical response to 5′-deoxy-5-fluorouridine. Eur J Cancer. 2004;40(10):1566–71.

    Article  CAS  PubMed  Google Scholar 

  8. Kong SY, Lim HS, Nam BH, Kook MC, Kim YW, Ryu KW, Lee JH, Choi IJ, Lee JS, Park YI, Kim NK, Park SR. Association of CYP2A6 polymorphisms with S-1 plus docetaxel therapy outcomes in metastatic gastric cancer. Pharmacogenomics. 2009;10(7):1147–55.

    Article  CAS  PubMed  Google Scholar 

  9. Park SR, Kong SY, Nam BH, Choi IJ, Kim CG, Lee JY, Cho SJ, Kim YW, Ryu KW, Lee JH, Rhee J, Park YI, Kim NK. CYP2A6 and ERCC1 polymorphisms correlate with efficacy of S-1 plus cisplatin in metastatic gastric cancer patients. Br J Cancer. 2011;104(7):1126–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Qu Y, Dang S, Hou P. Gene methylation in gastric cancer. Clin Chim Acta. 2013;424:53–65.

    Article  CAS  PubMed  Google Scholar 

  11. Sapari NS, Loh M, Vaithilingam A, Soong R. Clinical potential of DNA methylation in gastric cancer: a meta-analysis. PLoS ONE. 2012;7(4):e36275.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Zouridis H, Deng N, Ivanova T, Zhu Y, Wong B, Huang D, Wu YH, Wu Y, Tan IB, Liem N, Gopalakrishnan V, Luo Q, Wu J, Lee M, Yong WP, Goh LK, Teh BT, Rozen S, Tan P. Methylation subtypes and large-scale epigenetic alterations in gastric cancer. Sci Transl Med. 2012;4:156ra140.

    Article  PubMed  Google Scholar 

  13. Napieralski R, Ott K, Kremer M, Becker K, Boulesteix AL, Lordick F, Siewert JR, Höfler H, Keller G. Methylation of tumor-related genes in neoadjuvant-treated gastric cancer: relation to therapy response and clinicopathologic and molecular features. Clin Cancer Res. 2007;13(17):5095–102.

    Article  CAS  PubMed  Google Scholar 

  14. Mitsuno M, Kitajima Y, Ide T, Ohtaka K, Tanaka M, Satoh S, Miyazaki K. Aberrant methylation of p16 predicts candidates for 5-fluorouracil-based adjuvant therapy in gastric cancer patients. J Gastroenterol. 2007;42(11):866–73.

    Article  CAS  PubMed  Google Scholar 

  15. Arnold CN, Goel A, Boland CR. Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int J Cancer. 2003;106(1):66–73.

    Article  CAS  PubMed  Google Scholar 

  16. Gao J, Lu M, Yu JW, Li YY, Shen L. Thymidine phosphorylase/beta-tubulin III expressions predict the response in Chinese advanced gastric cancer patients receiving first-line capecitabine plus paclitaxel. BMC Cancer. 2011;11:177.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Eads CA, Lord RV, Wickramasinghe K, Long TI, Kurumboor SK, Bernstein L, Peters JH, DeMeester SR, DeMeester TR, Skinner KA, Laird PW. Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res. 2001;61(8):3410–8.

    CAS  PubMed  Google Scholar 

  18. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D, Koh H, Simms L, Barker M, Leggett B, Levine J, Kim M, French AJ, Thibodeau SN, Jass J, Haile R, Laird PW. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38(7):787–93.

    Article  CAS  PubMed  Google Scholar 

  19. Hiraki M, Kitajima Y, Sato S, Mitsuno M, Koga Y, Nakamura J, Hashiguchi K, Noshiro H, Miyazaki K. Aberrant gene methylation in the lymph nodes provides a possible marker for diagnosing micrometastasis in gastric cancer. Ann Surg Oncol. 2010;17(4):1177–86.

    Article  PubMed  Google Scholar 

  20. Quillien V, Lavenu A, Karayan-Tapon L, Carpentier C, Labussière M, Lesimple T, Chinot O, Wager M, Honnorat J, Saikali S, Fina F, Sanson M, Figarella-Branger D. Comparative assessment of 5 methods (methylation-specific polymerase chain reaction, MethyLight, pyrosequencing, methylation-sensitive high-resolution melting, and immunohistochemistry) to analyze O6-methylguanine-DNA-methyltranferase in a series of 100 glioblastoma patients. Cancer. 2012;118(17):4201–11.

    Article  CAS  PubMed  Google Scholar 

  21. Ogino S, Kawasaki T, Brahmandam M, Cantor M, Kirkner GJ, Spiegelman D, Makrigiorgos GM, Weisenberger DJ, Laird PW, Loda M, Fuchs CS. Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis. J Mol Diagn. 2006;8(2):209–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ogino S, Cantor M, Kawasaki T, Brahmandam M, Kirkner GJ, Weisenberger DJ, Campan M, Laird PW, Loda M, Fuchs CS. CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies. Gut. 2006;55(7):1000–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 1996;93(18):9821–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Otani K, Li X, Arakawa T, Chan FK, Yu J. Epigenetic-mediated tumor suppressor genes as diagnostic or prognostic biomarkers in gastric cancer. Expert Rev Mol Diagn. 2013;13(5):445–55.

    Article  CAS  PubMed  Google Scholar 

  25. Han SW, Lee HJ, Bae JM, Cho NY, Lee KH, Kim TY, Oh DY, Im SA, Bang YJ, Jeong SY, Park KJ, Park JG, Kang GH, Kim TY. Methylation and microsatellite status and recurrence following adjuvant FOLFOX in colorectal cancer. Int J Cancer. 2013;132(9):2209–16.

    Article  CAS  PubMed  Google Scholar 

  26. Kim JC, Choi JS, Roh SA, Cho DH, Kim TW, Kim YS. Promoter methylation of specific genes is associated with the phenotype and progression of colorectal adenocarcinomas. Ann Surg Oncol. 2010;17(7):1767–76.

    Article  PubMed  Google Scholar 

  27. Graziano F, Arduini F, Ruzzo A, Bearzi I, Humar B, More H, Silva R, Muretto P, Guilford P, Testa E, Mari D, Magnani M, Cascinu S. Prognostic analysis of E-cadherin gene promoter hypermethylation in patients with surgically resected, node-positive, diffuse gastric cancer. Clin Cancer Res. 2004;10(8):2784–9.

    Article  CAS  PubMed  Google Scholar 

  28. Yu QM, Wang XB, Luo J, Wang S, Fang XH, Yu JL, Ling ZQ. CDH1 methylation in preoperative peritoneal washes is an independent prognostic factor for gastric cancer. J Surg Oncol. 2012;106(6):765–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Nagasaka T, Sharp GB, Notohara K, Kambara T, Sasamoto H, Isozaki H, MacPhee DG, Jass JR, Tanaka N, Matsubara N. Hypermethylation of O6-methylguanine-DNA methyltransferase promoter may predict nonrecurrence after chemotherapy in colorectal cancer cases. Clin Cancer Res. 2003;9(14):5306–12.

    CAS  PubMed  Google Scholar 

  30. Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R. Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter1. Cancer Res. 2000;60(21):6039–44.

    CAS  PubMed  Google Scholar 

  31. Witkiewicz AK, Ertel A, McFalls J, Valsecchi ME, Schwartz G, Knudsen ES. RB-pathway disruption is associated with improved response to neoadjuvant chemotherapy in breast cancer. Clin Cancer Res. 2012;18(18):5110–22.

    Article  CAS  PubMed  Google Scholar 

  32. Arima Y, Hayashi N, Hayashi H, Sasaki M, Kai K, Sugihara E, Abe E, Yoshida A, Mikami S, Nakamura S, Saya H. Loss of p16 expression is associated with the stem cell characteristics of surface markers and therapeutic resistance in estrogen receptor-negative breast cancer. Int J Cancer. 2012;130(11):2568–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 81172110), National High Technology Research and Development Program (No. 2012AA 02A 504), and Beijing Municipal Science and Technology Commission Program (No. Z11110706730000).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Shen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12032_2014_988_MOESM1_ESM.tif

PFS and OS curves for 134 patients treated with fluorouracil-based chemotherapy as indicated by the methylation status of (A) p16, (B) CDH1, (C) MGMT, and (D) hMLH1 genes1 (TIFF 2977 kb)

12032_2014_988_MOESM2_ESM.tif

Analysis of p16 gene methylation. (A) CpG regions used for p16 bisulfite genomic sequencing analysis (35 CpGs): vertical bars indicate dinucleotide CpGs, and solid lines indicate the probe sequences used for Methylight analysis (CpG 17–24). (B) Representative results of bisulfite genomic sequencing of p16 gene. Cloned PCR products from 5 non-tumor and 10 tumor tissue samples (positive = 5, negative = 5) were examined on the basis of the Methylight results. The PCR products were cloned into the pCR4-Topo vector (Invitrogen, Carlsbad, CA, U.S.), and twelve clones were randomly chosen and sequenced. Black bars denote methylated CpG sites. ATG, start codon2 (TIFF 31522 kb)

Supplementary material 3 (DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, Y., Gao, J. et al. p16 Methylation is associated with chemosensitivity to fluorouracil in patients with advanced gastric cancer. Med Oncol 31, 988 (2014). https://doi.org/10.1007/s12032-014-0988-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0988-2

Keywords

Navigation