Skip to main content

Advertisement

Log in

Association of FoxP3 rs3761548 polymorphism with susceptibility to colorectal cancer in the Chinese population

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The aim of the present study was to determine the association of the Forkhead box P3 (FoxP3) rs3761548 polymorphism with the risk of colorectal cancer (CRC). Polymorphism genotyping was detected with polymerase chain reaction-polyacrylamide gel electrophoresis (PCR-PAGE), and data revealed that the AA, AC, and the combined A variant genotype (AA+AC) conferred a significantly greater risk of CRC [OR (95 % CI) = 2.806 (1.726–4.563), 1.54 (1.121–2.11), and 1.797 (1.344–2.404), respectively]. Moreover, the A allele of rs3761548 was observed to be associated with higher susceptibility of CRC [OR (95 % CI) = 1.792 (1.424–2.254)]. Unfortunately, no significant association was observed between the two subgroups after stratification by clinical characteristics including age; gender; tumor size, growth pattern, or differentiation; lymph node metastasis; and TNM pathological stage. Thus, we concluded that the FoxP3 gene polymorphism contributes to CRC susceptibility in a Chinese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitry E, Rachet B, Quinn MJ, Cooper N, Coleman MP. Survival from cancer of the rectum in England and Wales up to 2001. Br J Cancer. 2008;99(1):S30–2.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Galon J, Fridman WH, Pages F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res. 2007;67:1883–6.

    Article  CAS  PubMed  Google Scholar 

  3. Sakaguchi S. Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6:345–52.

    Article  CAS  PubMed  Google Scholar 

  4. Wang HY, Wang RF. Regulatory T cells and cancer. Curr Opin Immunol. 2007;19:217–23.

    Article  CAS  PubMed  Google Scholar 

  5. Kim M, Grimmig T, Grimm M, Lazariotou M, Meier E, Rosenwald A, et al. Expression of foxp3 in colorectal cancer but not in treg cells correlates with disease progression in patients with colorectal cancer. PLoS ONE. 2013;8:e53630.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009;27:186–92.

    Article  PubMed  Google Scholar 

  7. Clarke SL, Betts GJ, Plant A, Wright KL, El-Shanawany TM, Harrop R, et al. CD4+ CD25+ FOXP3+ regulatory T cells suppress anti-tumor immune responses in patients with colorectal cancer. PLoS ONE. 2006;1:e129.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Somasundaram R, Jacob L, Swoboda R, Caputo L, Song H, Basak S, et al. Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+/CD25+ regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-β. Cancer Res. 2002;62:5267–72.

    CAS  PubMed  Google Scholar 

  9. Bonertz A, Weitz J, Pietsch DH, Rahbari NN, Schlude C, Ge Y, et al. Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J Clin Investig. 2009;119:3311–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol. 2008;9:239–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity. 2005;22:329–41.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang L, Zhang Y, Desrosiers M, Wang C, Zhao Y, Han D. Genetic association study of FOXP3 polymorphisms in allergic rhinitis in a Chinese population. Hum Immunol. 2009;70(11):930–4.

    Article  CAS  PubMed  Google Scholar 

  13. Bossowski A, Borysewicz-Sańczyk H, Wawrusiewicz-Kurylonek N, Zasim A, Szalecki M, Wikiera B, et al. Analysis of chosen polymorphisms in FoxP3 gene in children and adolescents with autoimmune thyroid diseases. Autoimmunity. 2014;47(6):395–400.

    Article  CAS  PubMed  Google Scholar 

  14. Gao L, Li K, Li F, Li H, Liu L, Wang L, et al. Polymorphisms in the FOXP3 gene in Han Chinese psoriasis patients. J Dermatol Sci. 2010;57(1):51–6.

    Article  CAS  PubMed  Google Scholar 

  15. Jahan P, Ramachander VR, Maruthi G, Nalini S, Latha KP, Murthy TS. Foxp3 promoter polymorphism (rs3761548) in breast cancer progression: a study from India. Tumour Biol. 2014;35(4):3785–91.

    Article  CAS  PubMed  Google Scholar 

  16. Lopes LF, Guembarovski RL, Guembarovski AL, Kishima MO, Campos CZ, Oda JM, et al. FOXP3 transcription Factor: a candidate marker for susceptibility and prognosis in triple negative breast cancer. Biomed Res Int. 2014;2014:341654.

    PubMed  Google Scholar 

  17. Chen Y, Zhang H, Liao W, Zhou J, He G, Xie X, et al. FOXP3 gene polymorphism is associated with hepatitis B-related hepatocellular carcinoma in China. J Exp Clin Cancer Res. 2013;32:39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Littman DR, Rudensky A. Th17 and regulatory T Cells in mediating and restraining inflammation. Cell. 2010;140:845–58.

    Article  CAS  PubMed  Google Scholar 

  19. Beyer M, Schultze JL. Regulatory T cells in cancer. Blood. 2006;108:804–11.

    Article  CAS  PubMed  Google Scholar 

  20. Liu Z, Huang Q, Liu G, Dang L, Chu D, Tao K, et al. Presence of FOXP3(+)Treg cells is correlated with colorectal cancer progression. Int J Clin Exp Med. 2014;7(7):1781–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Ling A, Edin S, Wikberg ML, Öberg Å, Palmqvist R. The intratumoural subsite and relation of CD8(+) and FOXP3(+) T lymphocytes in colorectal cancer provide important prognostic clues. Br J Cancer. 2014;110(10):2551–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Aiello M, Vella N, Cannavo C, Scalisi A, Spandidos DA, Toffoli G, et al. Role of genetic polymorphisms and mutations in colorectal cancer therapy. Mol Med Rep. 2011;4(2):203–8.

    CAS  PubMed  Google Scholar 

  23. Winder T, Lenz HJ. Molecular predictive and prognostic markers in colon cancer. Cancer Treat Rev. 2010;36(7):550–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

All authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Yu, Q., Liu, B. et al. Association of FoxP3 rs3761548 polymorphism with susceptibility to colorectal cancer in the Chinese population. Med Oncol 31, 374 (2014). https://doi.org/10.1007/s12032-014-0374-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0374-0

Keywords

Navigation