Skip to main content
Log in

Neuroprotective Efficacy of Fisetin Against VPA-Induced Autistic Neurobehavioral Alterations by Targeting Dysregulated Redox Homeostasis

  • Research
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Autism is a neurodevelopmental condition, and it's associated pathophysiology, viz., oxidative stress and altered cellular homeostasis, has been extensively intertwined with behavioral impairments. Therefore, targeting oxidative stress and redox cellular homeostasis could be beneficial in relieving autistic-like symptoms. For this purpose, we examined a library of nutraceutical compounds that led us to a bioflavonoid fisetin. Autism-like neurobehavior was induced by subjecting the pregnant rodents to valproic acid at the time of neural tube closure (GD12.5). In this novel study, fisetin was evaluated for its neuroprotective potential at gestational (GD13 until delivery) and post-weaning developmental windows (PND 23–32) in VPA-induced rodent model of autism. Developmental VPA exposure increased intracellular ROS production, oxidative stress, altered AChE and ATPases in brain regions, and induced autistic-like behavioral impairments (social, repetitive, stereotyped, and sensorimotor). The present findings suggested that gestational and post-weaning fisetin treatment significantly improved the behavioral impairments by attenuating elevated oxidative stress, ROS, lipid peroxidation, and re-establishing redox homeostasis. Also, it effectively reinstated the reduced levels of endogenous antioxidants, glutathione, AChE, and ATPases by its antioxidant potential. Therefore, fisetin with its properties could be used as a potential therapeutic agent in overcoming the symptoms associated with autism.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability Data and Materials

All data generated or analyzed during this study are included in this manuscript and its supplementary information files.

References

  • Ádám Á, Kemecsei R, Company V, Murcia-Ramón R, Juarez I, Gerecsei LI et al (2020) Gestational exposure to sodium valproate disrupts fasciculation of the mesotelencephalic dopaminergic tract, with a selective reduction of dopaminergic output from the ventral tegmental area. Front Neuroanat 14:29. https://doi.org/10.3389/fnana.2020.00029. PMID32581730

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad SF, Nadeem A, Ansari MA, Bakheet SA, Al-Ayadhi LY, Attia SM (2017) Upregulation of IL-9 and JAK-STAT signaling pathway in children with autism. Prog Neuropsychopharmacol Biol Psychiatry 79(B):472–480. https://doi.org/10.1016/j.pnpbp.2017.08.002. PMID 28802860

  • Ahsan AU, Sharma VL, Wani A, Chopra M (2020) Naringenin upregulates AMPK-mediated autophagy to rescue neuronal cells from β-amyloid (1–42) evoked neurotoxicity. Mol Neurobiol 57(8):3589–3602. https://doi.org/10.1007/s12035-020-01969-4. PMID32542594

    Article  CAS  PubMed  Google Scholar 

  • Ajayi AF, Akhigbe RE (2020) Staging of the estrous cycle and induction of estrus in experimental rodents: an update. Fertil Res Pract 6:5. https://doi.org/10.1186/s40738-020-00074-3. PMID32190339

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Askar M, Bhat RS, Selim M, Al-Ayadhi L, El-Ansary A (2017) Postnatal treatment using curcumin supplements to amend the damage in VPA-induced rodent models of autism. BMC Complement Altern Med 17(1):259. https://doi.org/10.1186/s12906-017-1763-7. PMID28486989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Gadani Y, El-Ansary A, Attas O, Al-Ayadhi L (2009) Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clin Biochem 42(10–11):1032–1040. https://doi.org/10.1016/j.clinbiochem.2009.03.011. PMID19306862

  • Alvarez-Arellano L, Salazar-García M, Corona JC (2020) Neuroprotective effects of quercetin in pediatric neurological diseases. Molecules 25(23):5597. https://doi.org/10.3390/molecules25235597. PMID33260783

  • Alwan S (2015) Chambers CD (2015) Identifying human teratogens: an update. J Pediatr Genet 4(2):39–41. https://doi.org/10.1055/s-0035-1556745. PMID27617116

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Publishing, Arlington

    Book  Google Scholar 

  • Baek BS, Kwon HJ, Lee KH, Yoo MA, Kim KW, Ikeno Y et al (1999) Regional difference of ROS generation, lipid peroxidation, and antioxidant enzyme activity in rat brain and their dietary modulation. Arch Pharm Res 22(4):361–366. https://doi.org/10.1007/BF02979058. PMID10489874

  • Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–8. PMID13967893

  • Bolotta A, Visconti P, Fedrizzi G, Ghezzo A, Marini M, Manunta P et al (2018) Na+, K+ -ATPase activity in children with autism spectrum disorder: searching for the reason(s) of its decrease in blood cells. Autism Res 11(10):1388–1403. https://doi.org/10.1002/aur.2002. PMID30120881

  • Bonting SL, Simon KA, Hawkins NM (1961) Studies on sodium-potassium-activated adenosine triphosphatase. I. Quantitative distribution in several tissues of the cat. Arch Biochem Biophys 95:416–423. https://doi.org/10.1016/0003-9861(61)90170-9. PMID13871109

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310. https://doi.org/10.1016/s0076-6879(78)52032-6. PMID672633

  • Cezar LC, Kirsten TB, da Fonseca CCN, de Lima APN, Bernardi MM, Felicio LF (2018) Zinc as a therapy in a rat model of autism prenatally induced by valproic acid. Prog Neuropsychopharmacol Biol Psychiatry 84(A):173–180. https://doi.org/10.1016/j.pnpbp.2018.02.008. PMID29481896

  • Chahoud I, Paumgartten FJ (2009) Influence of litter size on the postnatal growth of rat pups: is there a rationale for litter-size standardization in toxicity studies? Environ Res 109(8):1021–1027. https://doi.org/10.1016/j.envres.2009.07.015. PMID19762015

  • Chaste P, Leboyer M (2012) Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin Neurosci 14(3):281–292. https://doi.org/10.31887/DCNS.2012.14.3/pchaste. PMID23226953

  • Chen R, Lai UH, Zhu L, Singh A, Ahmed M, Forsyth NR (2018) Reactive oxygen species formation in the brain at different oxygen levels: the role of hypoxia inducible factors. Front Cell Dev Biol 6:132. https://doi.org/10.3389/fcell.2018.00132. PMID30364203

  • Chen X, Yue J, Luo Y, Huang L, Li B, Wen S (2021) Distinct behavioral traits and associated brain regions in mouse models for obsessive-compulsive disorder. Behav Brain Funct 17(1):4. https://doi.org/10.1186/s12993-021-00177-x. PMID34006308

  • Chen Y, Qin C, Huang J, Tang X, Liu C, Huang K et al (2020) The role of astrocytes in oxidative stress of central nervous system: a mixed blessing. Cell Prolif 53(3):e12781. https://doi.org/10.1111/cpr.12781. PMID32035016.

  • Cheng N, Rho JM, Masino SA (2017) Metabolic dysfunction underlying autism spectrum disorder and potential treatment approaches. Front Mol Neurosci 10:34. https://doi.org/10.3389/fnmol.2017.00034. PMID28270747

  • Clement JG (1994) Chromodacryorrhea in rats: absence following soman poisoning. Toxicol Appl Pharmacol 124(1):52–58. https://doi.org/10.1006/taap.1994.1007. PMID: 8291061

    Article  CAS  PubMed  Google Scholar 

  • de Mattos BDS, Soares MSP, Spohr L, Pedra NS, Teixeira FC, de Souza AA et al (2020) Quercetin prevents alterations of behavioral parameters, delta-aminolevulinic dehydratase activity, and oxidative damage in brain of rats in a prenatal model of autism. Int J Dev Neurosci 80(4):287–302. https://doi.org/10.1002/jdn.10025. PMID32181519

  • Dufour-Rainfray D, Vourc’h P, Tourlet S, Guilloteau D, Chalon S, Andres CR (2011) Fetal exposure to teratogens: evidence of genes involved in autism. Neurosci Biobehav Rev 35(5):1254–1265. https://doi.org/10.1016/j.neubiorev.2010.12.013. PMID21195109

  • Eissa N, Azimullah S, Jayaprakash P, Jayaraj RL, Reiner D, Ojha SK et al (2019) The dual-active histamine H3 receptor antagonist and acetylcholine esterase inhibitor E100 ameliorates stereotyped repetitive behavior and neuroinflammmation in sodium valproate induced autism in mice. Chem Biol Interact 312:108775. https://doi.org/10.1016/j.cbi.2019.108775. PMID31369746.

  • Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  PubMed  Google Scholar 

  • Elsabbagh M, Divan G, Koh YJ, Kim YS, Kauchali S, Marcín C et al (2012) Global prevalence of autism and other pervasive developmental disorders. Autism Res 5(3):160–179. https://doi.org/10.1002/aur.239. PMID22495912

  • Favre MR, Barkat TR, Lamendola D, Khazen G, Markram H, Markram K (2013) General developmental health in the VPA-rat model of autism. Front Behav Neurosci 7:88. https://doi.org/10.3389/fnbeh.2013.00088. PMID23898245

  • Fereshetyan K, Chavushyan V, Danielyan M, Yenkoyan K (2021) Assessment of behavioral, morphological and electrophysiological changes in prenatal and postnatal valproate induced rat models of autism spectrum disorder. Sci Rep 11(1):23471. https://doi.org/10.1038/s41598-021-02994-6. PMID34873263

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. Biol Chem 66(2):375–400. https://doi.org/10.1016/S0021-9258(18)84756-1

    Article  CAS  Google Scholar 

  • Fontes-Dutra M, Santos-Terra J, Deckmann I, Brum Schwingel G, Della-Flora Nunes G, Hirsch MM et al (2018) Resveratrol prevents cellular and behavioral sensory alterations in the animal model of autism induced by valproic acid. Front Synaptic Neurosci 10:9. https://doi.org/10.3389/fnsyn.2018.00009. PMID29872390

  • Frye RE, Cakir J, Rose S, Palmer RF, Austin C, Curtin P et al (2021) Mitochondria may mediate prenatal environmental influences in autism spectrum disorder. J Pers Med 11(3):218. https://doi.org/10.3390/jpm11030218. PMID33803789

  • Gąssowska-Dobrowolska M, Cieślik M, Czapski GA, Jęśko H, Frontczak-Baniewicz M, Gewartowska M et al (2020) Prenatal exposure to valproic acid affects microglia and synaptic ultrastructure in a brain-region-specific manner in young-adult male rats: relevance to autism spectrum disorders. Int J Mol Sci 21(10):3576. https://doi.org/10.3390/ijms21103576. PMID32443651

  • Goel HC, Sajikumar S, Sharma A (2002) Effects of podophyllum hexandrum on radiation induced delay of postnatal appearance of reflexes and physiological markers in rats irradiated in utero. Phytomedicine 9(5):447–454. https://doi.org/10.1078/09447110260571715. PMID12222667

  • Griffiths KK, Levy RJ (2017) Evidence of mitochondrial dysfunction in autism: biochemical links, genetic-based associations, and non-energy-related mechanisms. Oxid Med Cell Longev 2017:4314025. https://doi.org/10.1155/2017/4314025. PMID28630658

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–9. https://doi.org/10.1016/S0021-9258(19)42083-8. PMID4436300.

  • Hassan SSU, Samanta S, Dash R, Karpiński TM, Habibi E, Sadiq A et al (2022) The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: focus on the role of oxidative stress. Front Pharmacol 13:1015835. https://doi.org/10.3389/fphar.2022.1015835. PMID36299900

  • He L, He T, Farrar S, Ji L, Liu T, Ma X (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44(2):532–553. https://doi.org/10.1159/000485089. PMID29145191

  • Hjertén S, Pan H (1983) Purification and characterization of two forms of a low-affinity Ca2+-ATPase from erythrocyte membranes. Biochim Biophys Acta 728(2):281–288. https://doi.org/10.1016/0005-2736(83)90480-7. PMID: 6219703

  • Hodges H, Fealko C, Soares N (2020) Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation. Transl Pediatr 9(Suppl 1):S55–S65. https://doi.org/10.21037/tp.2019.09.09. PMID32206584

  • Honarmand Tamizkar K, Badrlou E, Aslani T, Brand S, Arsang-Jang S, Ghafouri-Fard S et al (2021) Dysregulation of NF-κB-associated LncRNAs in autism spectrum disorder. Front Mol Neurosci 14:747785. https://doi.org/10.3389/fnmol.2021.747785. PMID34658787.

  • Horiquini Barbosa E, Vallim JH, Lachat JJ, de Castro VL (2016) Assessments of motor abnormalities on the grid-walking and foot-fault tests from undernutrition in Wistar rats. J Mot Behav 48(1):5–12. https://doi.org/10.1080/00222895.2015.1024824. PMID25923475

  • Jacob S, Thangarajan S (2017) Effect of gestational intake of fisetin (3,3′,4′,7-Tetrahydroxyflavone) on developmental methyl mercury neurotoxicity in F1 generation rats. Biol Trace Elem Res 177(2):297–315. https://doi.org/10.1007/s12011-016-0886-x. PMID27815688

  • Ji L, Chauhan A, Brown WT, Chauhan V (2009) Increased activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase in the frontal cortex and cerebellum of autistic individuals. Life Sci 85(23–26):788–793. https://doi.org/10.1016/j.lfs.2009.10.008. PMID19863947

  • Kanner L (1943) Autistic disturbances of affective contact. Nerv Child 2:217–250

    Google Scholar 

  • Karvat G, Kimchi T (2014) Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism. Neuropsychopharmacology 39(4):831–840. https://doi.org/10.1038/npp.2013.274. PMID24096295

  • Kaushal S, Ahsan AU, Sharma VL, Chopra M (2019) Epigallocatechin gallate attenuates arsenic induced genotoxicity via regulation of oxidative stress in BALB/c mice. Mol Biol Rep 46(5):5355–5369. https://doi.org/10.1007/s11033-019-04991-5. PMID31350662

  • Kazdoba TM, Leach PT, Yang M, Silverman JL, Solomon M, Crawley JN (2016) Translational mouse models of autism: advancing toward pharmacological therapeutics. Curr Top Behav Neurosci 28:1–52. https://doi.org/10.1007/7854_2015_5003. PMID27305922

  • Khan N, Syed DN, Ahmad N, Mukhtar H (2013) Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal 19(2):151–162. https://doi.org/10.1089/ars.2012.4901. PMID23121441

  • Khatoon S, Agarwal NB, Samim M, Alam O (2021) Neuroprotective effect of fisetin through suppression of IL-1R/TLR axis and apoptosis in pentylenetetrazole-induced kindling in mice. Front Neurol 12:689069. https://doi.org/10.3389/fneur.2021.689069, PMID 34354662

  • Khera R, Mehan S, Kumar S, Sethi P, Bhalla S, Prajapati A (2022) Role of JAK-STAT and PPAR-gamma signalling modulators in the prevention of autism and neurological dysfunctions. Mol Neurobiol 59(6):3888–3912. https://doi.org/10.1007/s12035-022-02819-1. PMID35437700

  • Kim KC, Kim P, Go HS, Choi CS, Yang SI, Cheong JH et al (2011) The critical period of valproate exposure to induce autistic symptoms in Sprague-Dawley rats. Toxicol Lett 201(2):137–142. https://doi.org/10.1016/j.toxlet.2010.12.018. PMID21195144

  • Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186(1):189–195. https://doi.org/10.1016/0003-9861(78)90479-4. PMID24422

  • Koren G, Nava-Ocampo (2006) AA, Moretti ME, Sussman R, Nulman I. Major malformations with valproic acid. Can Fam Physician 52(4):441–447. PMID16639967.

  • Kudlak M, Tadi P (2021) Physiology, muscarinic receptor. InStatPearls [Internet]. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK555909/

  • Kumar S, Reynolds K, Ji Y, Gu R, Rai S, Zhou CJ (2019) Impaired neurodevelopmental pathways in autism spectrum disorder: a review of signaling mechanisms and crosstalk. J Neurodev Disord 11(1):10. https://doi.org/10.1186/s11689-019-9268-y. PMID31202261

  • Kumaravel P, Melchias G, Vasanth N, Manivasagam T (2017) Epigallocatechin gallate attenuates behavioral defects in sodium valproate induced autism rat model. Res J Pharm Technol 10(5):1477–1480

    Article  Google Scholar 

  • Landolfo S, Politi H, Angelozzi D, Mannazzu I (2008) ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium. Biochim Biophys Acta 1780(6):892–898. https://doi.org/10.1016/j.bbagen.2008.03.008. PMID18395524

  • László K, Kiss O, Vörös D, Mintál K, Ollmann T, Péczely L et al (2022) Intraamygdaloid oxytocin reduces anxiety in the valproate-induced autism rat model. Biomedicines 10(2):405. https://doi.org/10.3390/biomedicines10020405. PMID35203614

  • Lázaro MT, Golshani P (2015) The utility of rodent models of autism spectrum disorders. Curr Opin Neurol 28(2):103–109. https://doi.org/10.1097/WCO.0000000000000183. PMID25734952

  • Lee KH, Cha M, Lee BH (2021) Crosstalk between neuron and glial cells in oxidative injury and neuroprotection. Int J Mol Sci 22(24):13315. https://doi.org/10.3390/ijms222413315. PMID34948108

  • Liu X, Lin J, Zhang H, Khan NU, Zhang J, Tang X et al (2022) Oxidative stress in autism spectrum disorder-current progress of mechanisms and biomarkers. Front Psychiatry 13:813304. https://doi.org/10.3389/fpsyt.2022.813304. PMID35299821.

  • Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J (2018) Autism spectrum disorder. Lancet 392(10146):508–520. https://doi.org/10.1016/S0140-6736(18)31129-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275. https://doi.org/10.1016/S0021-9258(19)52451-6. PMID14907713

  • Luck H (1971) Catalase. In: Hu B (ed) Methods of enzymatic analysis, vol 3, p 279

  • Lyall K, Croen L, Daniels J, Fallin MD, Ladd-Acosta C, Lee BK et al (2017) The changing epidemiology of autism spectrum disorders. Annu Rev Public Health 38:81–102. https://doi.org/10.1146/annurev-publhealth-031816-044318. PMID28068486

  • Mabunga DF, Gonzales EL, Kim JW, Kim KC, Shin CY (2015) Exploring the validity of valproic acid animal model of autism. Exp Neurobiol 24(4):285–300. https://doi.org/10.5607/en.2015.24.4.285. PMID26713077

  • Maher P (2021) Preventing and treating neurological disorders with the flavonol fisetin. Brain Plast 6(2):155–166. https://doi.org/10.3233/BPL-200104. PMID33782648

  • Massaad CA, Klann E (2011) Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 14(10):2013–2054. https://doi.org/10.1089/ars.2010.3208. PMID20649473

  • Maurissen JP, Hoberman AM, Garman RH, Hanley TR Jr (2000) Lack of selective developmental neurotoxicity in rat pups from dams treated by gavage with chlorpyrifos. Toxicol Sci 57(2):250–263. https://doi.org/10.1093/toxsci/57.2.250. PMID11006355

  • Mehra S, Ul Ahsan A, Seth E, Chopra M (2022) Critical evaluation of valproic acid-induced rodent models of autism: current and future perspectives. J Mol Neurosci 72(6):1259–1273. https://doi.org/10.1007/s12031-022-02033-7. PMID35635674

  • Modabbernia A, Velthorst E, Reichenberg A (2017) Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses. Mol Autism 8:13. https://doi.org/10.1186/s13229-017-0121-4. PMID28331572

  • Morakotsriwan N, Wattanathorn J, Kirisattayakul W, Chaisiwamongkol K (2016) Autistic-like behaviors, oxidative stress status, and histopathological changes in cerebellum of valproic acid rat model of autism are improved by the combined extract of purple rice and silkworm pupae. Oxid Med Cell Longev 2016:3206561. https://doi.org/10.1155/2016/3206561. PMID27034733

  • Mousain-Bosc M, Siatka C, Bali JP (2011) Magnesium, hyperactivity and autism in children. In: Vink R, Nechifor M, editors. Magnesium in the central nervous system [Internet]. Adelaide (AU): University of Adelaide Press. PMID: 29920003.

  • Muckova L, Vanova N, Misik J, Herman D, Pejchal J, Jun D (2019) Oxidative stress induced by oxime reactivators of acetylcholinesterase in vitro. Toxicol in Vitro 56:110–117. https://doi.org/10.1016/j.tiv.2019.01.013. PMID30682493

  • Mychasiuk R, Richards S, Nakahashi A, Kolb B, Gibb R (2012) Effects of rat prenatal exposure to valproic acid on behaviour and neuro-anatomy. Dev Neurosci 34(2–3):268–276. https://doi.org/10.1159/000341786. PMID22890088

  • Nabavi SF, Braidy N, Habtemariam S, Sureda A, Manayi A, Nabavi SM (2016) Neuroprotective effects of fisetin in Alzheimer’s and Parkinson’s diseases: from chemistry to medicine. Curr Top Med Chem 16(17):1910–1915. https://doi.org/10.2174/1568026616666160204121725. PMID26845554

  • Napoli E, Wong S, Giulivi C (2013) Evidence of reactive oxygen species-mediated damage to mitochondrial DNA in children with typical autism. Mol Autism 4(1):2. https://doi.org/10.1186/2040-2392-4-2. PMID23347615

  • Negre-Salvayre A, Coatrieux C, Ingueneau C, Salvayre R (2008) Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol 153(1):6–20. https://doi.org/10.1038/sj.bjp.0707395. PMID17643134.

  • Nicolini C, Fahnestock M (2018) The valproic acid-induced rodent model of autism. Exp Neurol. 2018;299(A):217–227. https://doi.org/10.1016/j.expneurol.2017.04.017. PMID28472621.

  • Ohnishi T, Suzuki T, Suzuki Y, Ozawa K (1982) A comparative study of plasma membrane Mg2+-ATPase activities in normal, regenerating and malignant cells. Biochim Biophys Acta 684(1):67–74. https://doi.org/10.1016/0005-2736(82)90050-5

    Article  CAS  PubMed  Google Scholar 

  • Ornoy A, Weinstein-Fudim L, Ergaz Z (2016) Genetic syndromes, maternal diseases and antenatal factors associated with autism spectrum disorders (ASD). Front Neurosci 10:316. https://doi.org/10.3389/fnins.2016.00316. PMID27458336

  • Oswald MCW, Garnham N, Sweeney ST, Landgraf M (2018) Regulation of neuronal development and function by ROS. FEBS Lett 592(5):679–691. https://doi.org/10.1002/1873-3468.12972. PMID29323696

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47. https://doi.org/10.1017/jns.2016.41. PMID28620474.

  • Pangrazzi L, Balasco L, Bozzi Y (2020) Oxidative stress and immune system dysfunction in autism spectrum disorders. Int J Mol Sci 21(9):3293. https://doi.org/10.3390/ijms21093293. PMID32384730

  • Paris JJ, Brunton PJ, Russell JA, Frye CA (2011) Immune stress in late pregnant rats decreases length of gestation and fecundity, and alters later cognitive and affective behaviour of surviving pre-adolescent offspring. Stress (amsterdam Neth) 14(6):652–664. https://doi.org/10.3109/10253890.2011.628719. PMID21995525

  • Pathak N, Khandelwal S (2009) Immunomodulatory role of piperine in cadmium induced thymic atrophy and splenomegaly in mice. Environ Toxicol Pharmacol 28(1):52–60. https://doi.org/10.1016/j.etap.2009.02.003. PMID21783982

  • Pragnya B, Kameshwari JS, Veeresh B (2014) Ameliorating effect of piperine on behavioral abnormalities and oxidative markers in sodium valproate induced autism in BALB/c mice. Behav Brain Res 270:86–94. https://doi.org/10.1016/j.bbr.2014.04.045. PMID24803211

  • Qiu J, Singh P, Pan G, de Paolis A, Champagne FA, Liu J et al (2020) Defining the relationship between maternal care behavior and sensory development in Wistar rats: auditory periphery development, eye opening and brain gene expression. PLOS ONE 15(8):e0237933. https://doi.org/10.1371/journal.pone.0237933. PMID32822407.

  • Randolph-Gips M, Srinivasan P (2012) Modeling autism: a systems biology approach. J Clin Bioinforma 2(1):17. https://doi.org/10.1186/2043-9113-2-17. PMID23043674

  • Rasalam AD, Hailey H, Williams JH, Moore SJ, Turnpenny PD, Lloyd DJ et al (2005) Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev Med Child Neurol 47(8):551–555. https://doi.org/10.1017/s0012162205001076. PMID16108456

  • Ravula AR, Teegala SB, Kalakotla S, Pasangulapati JP, Perumal V, Boyina HK (2021) Fisetin, potential flavonoid with multifarious targets for treating neurological disorders: an updated review. Eur J Pharmacol 910:174492. https://doi.org/10.1016/j.ejphar.2021.174492. PMID34516952.

  • Rosina E, Battan B, Siracusano M, Di Criscio L, Hollis F, Pacini L et al (2019) Disruption of mTOR and MAPK pathways correlates with severity in idiopathic autism. Transl Psychiatry 9(1):50. https://doi.org/10.1038/s41398-018-0335-z. PMID30705255

  • Rossignol DA, Frye RE (2014) Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front Physiol 5:150. https://doi.org/10.3389/fphys.2014.00150. PMID24795645

  • Roullet FI, Lai JK, Foster JA (2013) In utero exposure to valproic acid and autism–a current review of clinical and animal studies. Neurotoxicol Teratol 36:47–56. https://doi.org/10.1016/j.ntt.2013.01.004. PMID23395807

  • Ruhela RK, Soni S, Sarma P, Prakash A, Medhi B (2019) Negative geotaxis: an early age behavioral hallmark to VPA rat model of autism. Ann Neurosci 26(1):25–31. https://doi.org/10.5214/ans.0972.7531.260106. PMID31975769

  • Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360(1):201–205. https://doi.org/10.1124/jpet.116.237503. PMID27754930

  • Schneider T, Labuz D, Przewłocki R (2001) Nociceptive changes in rats after prenatal exposure to valproic acid. Pol J Pharmacol 53(5):531–534. PMID11990073

  • Schneider T, Przewłocki R (2005) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30(1):80–89. https://doi.org/10.1038/sj.npp.1300518. PMID: 15238991

  • Schrier MS, Zhang Y, Trivedi MS, Deth RC (2022) Decreased cortical Nrf2 gene expression in autism and its relationship to thiol and cobalamin status. Biochimie 192:1–12. https://doi.org/10.1016/j.biochi.2021.09.006. PMID34517051

  • Seth E, Ahsan AU, Kaushal S, Mehra S, Chopra M (2021) Berberine affords protection against oxidative stress and apoptotic damage in F1 generation of Wistar rats following lactational exposure to chlorpyrifos. Pestic Biochem Physiol 179:104977. https://doi.org/10.1016/j.pestbp.2021.104977. PMID34802527

  • Smith V, Brown N (2014) Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. Arch Dis Child Educ Pract Ed 99(5):198. https://doi.org/10.1136/archdischild-2013-305636. PMID24692263

  • Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS et al (2019) ROS Generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev 2019:6175804. https://doi.org/10.1155/2019/6175804. PMID31467634

  • Sultana R, Perluigi M, Butterfield DA (2013) Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med 62:157–169. https://doi.org/10.1016/j.freeradbiomed.2012.09.027. PMID23044265

  • Taylor MJ, Rosenqvist MA, Larsson H, Gillberg C, D’Onofrio BM, Lichtenstein P et al (2020) Etiology of autism spectrum disorders and autistic traits over time. JAMA Psychiat 77(9):936–943. https://doi.org/10.1001/jamapsychiatry.2020.0680. PMID32374377

  • Terzi A, Alam SMS, Suter DM (2021) ROS Live Cell imaging during neuronal development. J Vis Exp 168(168). https://doi.org/10.3791/62165. PMID33645566

  • Terzioğlu Bebitoğlu B, Oğuz E, Gökçe A (2020) Effect of valproic acid on oxidative stress parameters of glutamate-induced excitotoxicity in SH-SY5Y cells. Exp Ther Med 20(2):1321–1328. https://doi.org/10.3892/etm.2020.8802. PMID32742366

  • Vithayathil J, Pucilowska J, Landreth GE (2018) ERK/MAPK signaling and autism spectrum disorders. Prog Brain Res 241:63–112. https://doi.org/10.1016/bs.pbr.2018.09.008. PMID30447757

  • Wilde M, Constantin L, Thorne PR, Montgomery JM, Scott EK, Cheyne JE (2022) Auditory processing in rodent models of autism: a systematic review. J Neurodev Disord 14(1):48. https://doi.org/10.1186/s11689-022-09458-6. PMID36042393

  • Yang M, Silverman JL, Crawley JN (2011) Automated three-chambered social approach task for mice. Curr Protoc Neurosci Chapter 8:Unit 8.26. https://doi.org/10.1002/0471142301.ns0826s56. PMID21732314

  • Yang EJ, Ahn S, Lee K, Mahmood U, Kim HS (2016) Early behavioral abnormalities and perinatal alterations of PTEN/AKT pathway in valproic acid autism model mice. PLoS One 11(4):e0153298. https://doi.org/10.1371/journal.pone.0153298. PMID27071011

  • Žigman T, Petković Ramadža D, Šimić G, Barić I (2021) Inborn errors of metabolism associated with autism spectrum disorders: approaches to intervention. Front Neurosci 15:673600. https://doi.org/10.3389/fnins.2021.673600. PMID34121999

  • Zunec S, Kopjar N, Zeljezić D, Kuca K, Musilek K, Lucić Vrdoljak A (2014) In vivo evaluation of cholinesterase activity, oxidative stress markers, cyto- and genotoxicity of K048 oxime–a promising antidote against organophosphate poisoning. Basic Clin Pharmacol Toxicol 114(4):344–351. https://doi.org/10.1111/bcpt.12158. PMID24741714

Download references

Acknowledgements

We are thankful to the Council of Scientific and Industrial Research (CSIR) for providing financial assistance to Ms. Sweety Mehra to carry out the research work. A vote of thanks goes to the Department of Zoology, Panjab University, Chandigarh, where the above-mentioned experimental work was carried out. Special thanks to Dr. Surbhi Kaushal and Dr. Naveed Pervaiz for their constant support during the research work.

Funding

Ms. Sweety Mehra received CSIR Research fellowship to carry out the mentioned work (09/135/2017 (790)-EMR-I).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Sweety Mehra, Aitizaz Ul Ahsan, Madhu Sharma, Muskan Budhwar, and Mani Chopra. The first draft of the manuscript (along with figures) was prepared by Sweety Mehra, and all the authors commented on all versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mani Chopra.

Ethics declarations

Ethical Approval

The study was approved by the Institutional Animal Ethics Committee (Approval No: (PU/45/99/CPCSEA/IAEC/2019/271). All experiments were conducted in compliance with the guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA).

Consent to Participate

N/A.

Consent for Publication

N/A.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehra, S., Ahsan, A.U., Sharma, M. et al. Neuroprotective Efficacy of Fisetin Against VPA-Induced Autistic Neurobehavioral Alterations by Targeting Dysregulated Redox Homeostasis. J Mol Neurosci 73, 403–422 (2023). https://doi.org/10.1007/s12031-023-02127-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-023-02127-w

Keywords

Navigation