Skip to main content
Log in

AATF Competitively Interacts with Nuclear AIF and Inhibits Parthanatos of Neurons in dMCAO/R and OGD/R Models

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Ischemic stroke (IS) poses a heavy burden on the healthcare system, and revascularization is the most effective treatment. However, ischemia/reperfusion (I/R) injury, one main cause of revascularization complications, significantly hinders IS recovery. Unfortunately, none of the neuroprotectants tested to date has been successfully translated clinically for post-revascularization I/R injury therapy. In multiple pathophysiological processes, apoptosis antagonizing transcription factor (AATF) serves as a cell protector, but its role in neuronal I/R injury is unknown. Therefore, we firstly demonstrated the expression profiles of AATF in a distal middle cerebral artery occlusion/reperfusion (dMCAO/R) model and found that AATF expression was increased in cortical neuron after dMCAO/R. Over-expressing AATF reduced infarct volume, alleviated neuronal death, and promoted neurological functions. Next, we used an oxygen–glucose deprivation/reoxygenation (OGD/R) model to investigate the mechanism of AATF. Results indicated that AATF alleviated OGD/R-induced large-scale DNA fragmentation, which suggested that the protective effect of AATF may be attributed to parthanatos inhibition. After that, we examined the regulatory mechanism of AATF. We found that AATF did not affect poly (ADP-ribose) accumulation and apoptosis-inducing factor (AIF) nucleus translocation. AATF competitively interacted with nuclear AIF, which inhibited AIF from binding DNA. At last, we verified the effect and mechanism of AATF in dMCAO/R model. The present study, for the first time, demonstrates the expression, function, and mechanism of AATF in the context of neuronal I/R injury via dMCAO/R and OGD/R model, which provides new evidence in this area and may facilitate exploring new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Funding

This study was supported by the National Natural Science Foundations of China (No. 81571277 and No. 81071061) and the Clinical Research Special Project of Shanghai Municipal Health Commission (No. 20204Y0131).

Author information

Authors and Affiliations

Authors

Contributions

WX and WJ: study design and manuscript writing. WX, ZH, and DY: experiments performing and data analysis. Y-EZ and X-XZ: data analysis. R-CC: manuscript writing. WJ: work supervision.

Corresponding author

Correspondence to Wei Jin.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1955 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Hu, Z., Yin, D. et al. AATF Competitively Interacts with Nuclear AIF and Inhibits Parthanatos of Neurons in dMCAO/R and OGD/R Models. J Mol Neurosci 72, 2218–2232 (2022). https://doi.org/10.1007/s12031-022-02064-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-022-02064-0

Keywords

Navigation