Skip to main content

Advertisement

Log in

Clinical and Molecular Spectrum of Muscular Dystrophies (MDs) with Intellectual Disability (ID): a Comprehensive Overview

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Muscular dystrophies encompass a wide and heterogeneous subset of hereditary myopathies that manifest by the structural or functional abnormalities in the skeletal muscle. Some pathogenic mutations induce a dysfunction or loss of proteins that are critical for the stability of muscle cells, leading to progressive muscle degradation and weakening. Several studies have well-established cognitive deficits in muscular dystrophies which are mainly due to the disruption of brain-specific expression of affected muscle proteins. We provide a comprehensive overview of the types of muscular dystrophies that are accompanied by intellectual disability by detailed consulting of the main libraries. The current paper focuses on the clinical and molecular evidence about Duchenne, congenital, limb-girdle, and facioscapulohumeral muscular dystrophies as well as myotonic dystrophies. Because these syndromes impose a heavy burden of psychological and financial problems on patients, their families, and the health care community, a thorough examination is necessary to perform timely psychological and medical interventions and thus improve the quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Anaya-Segura MA, García-Martínez FA, Montes-Almanza LÁ et al (2015) Non-invasive biomarkers for duchenne muscular dystrophy and carrier detection. Molecules 20:11154–11172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JL, Head SI, Rae C and Morley JW (2002) Brain function in Duchenne muscular dystrophy. Brain 125:4-13. https://doi.org/10.1093/brain/awf012

  • Angelini C (2017) Genetic neuromuscular disorders: a case-based approach. Springer

  • Arvio M, Määttänen L, Haanpää M, Lähdetie J (2019) Two middle-aged women with the Finnish variant of muscle-eye-brain disease (MEB). Am J Med Genet Part A. https://doi.org/10.1002/ajmg.a.61369

    Article  PubMed  Google Scholar 

  • Astrea G, Battini R, Lenzi S, Frosini S, Bonetti S, Moretti E, Perazza S, Santorelli FM and Pecini C (2016) Learning disabilities in neuromuscular disorders: a springboard for adult life. Acta Myologica 35:90

  • Astrea G, Pecini C, Gasperini F et al (2015) Reading impairment in Duchenne muscular dystrophy: a pilot study to investigate similarities and differences with developmental dyslexia. Res Dev Disabil 45:168–177

    PubMed  Google Scholar 

  • Auranen M, Rapola J, Pihko H et al (2000) Muscle membrane-skeleton protein changes and histopathological characterization of muscle-eye-brain disease. Neuromuscul Disord 10:16–23. https://doi.org/10.1016/S0960-8966(99)00066-8

    Article  CAS  PubMed  Google Scholar 

  • Balci B, Uyanik G, Dincer P et al (2005) An autosomal recessive limb girdle muscular dystrophy (LGMD2) with mild mental retardation is allelic to Walker-Warburg syndrome (WWS) caused by a mutation in the POMT1 gene. Neuromuscul Disord 15:271–275

    PubMed  Google Scholar 

  • Banihani R, Smile S, Yoon G, Mosleh M, Snider A and McAdam L (2014) GP 175: Cognitive and neurobehavioral profile and its relation with genotype mutation in boys with Duchenne muscular dystrophy. Neuromuscul Disord 24:858

  • Banihani R, Smile S, Yoon G et al (2015a) Cognitive and neurobehavioral profile in boys with Duchenne muscular dystrophy. J Child Neurol 30:1472–1482

    PubMed  Google Scholar 

  • Banihani R, Smile S, Yoon G et al (2015b) Cognitive and neurobehavioral profile in boys with duchenne muscular dystrophy. J Child Neurol. https://doi.org/10.1177/0883073815570154

    Article  PubMed  Google Scholar 

  • Barkovich AJ (1998) Neuroimaging manifestations and classification of congenital muscular dystrophies. Am J Neuroradiol 19:1389-1396

  • Bello L, Melacini P, Pezzani R et al (2012) Cardiomyopathy in patients with POMT1-related congenital and limb-girdle muscular dystrophy. Eur J Hum Genet. https://doi.org/10.1038/ejhg.2012.71

    Article  PubMed  PubMed Central  Google Scholar 

  • Biancheri R, Bertini E, Falace A et al (2006) POMGnT1 mutations in congenital muscular dystrophy: genotype-phenotype correlation and expanded clinical spectrum. Arch Neurol 63:1491–1495

    PubMed  Google Scholar 

  • Biancheri R, Falace A, Tessa A et al (2007) POMT2 gene mutation in limb-girdle muscular dystrophy with inflammatory changes. Biochem Biophys Res Commun 363:1033–1037

    CAS  PubMed  Google Scholar 

  • Borisovna KO, Yurievna KA, Yurievich TK et al (2019) Compound heterozygous POMGNT1 mutations leading to muscular dystrophy-dystroglycanopathy type A3: a case report. BMC Pediatr. https://doi.org/10.1186/s12887-019-1470-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Bresolin N, Castelli E, Comi GP et al (1994) Cognitive impairment in Duchenne muscular dystrophy. Neuromuscul Disord 4:359–369

    CAS  PubMed  Google Scholar 

  • Brown SC, Fassati A, Popplewell L et al (1999) Dystrophic phenotype induced in vitro by antibody blockade of muscle α-dystroglycan-laminin interaction. J Cell Sci 112:209–216. https://doi.org/10.1242/jcs.112.2.209

    Article  CAS  PubMed  Google Scholar 

  • Butterfield RJ (2019) Congenital muscular dystrophy and congenital myopathy. Contin Lifelong Learn Neurol 25:1640-1661

  • Carss KJ, Stevens E, Foley AR et al (2013) Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan. Am J Hum Genet 93:29–41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YM, Keramaris-Vrantsis E, Lidov HG et al (2010) Fukutin-related protein is essential for mouse muscle, brain and eye development and mutation recapitulates the wide clinical spectrums of dystroglycanopathies. Hum Mol Genet. https://doi.org/10.1093/hmg/ddq314

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiara Manzini M, Gleason D, Chang BS et al (2008) Ethnically diverse causes of Walker-Warburg syndrome (WWS): FCMD mutations are a more common cause of WWS outside of the Middle East. Hum Mutat 29:E231–E241

    PubMed  Google Scholar 

  • Chiyonobu T, Sasaki J, Nagai Y et al (2005) Effects of fukutin deficiency in the developing mouse brain. Neuromuscul Disord 15:416–426. https://doi.org/10.1016/j.nmd.2005.03.009

    Article  PubMed  Google Scholar 

  • Cirak S, Herrmann R, Uyanik G et al (2006) Expanding the spectrum of POMT1 mutations: limb-girdle muscular dystrophy with mental retardation and microcephaly (LGMD2K). Neuropediatrics. https://doi.org/10.1055/s-2006-974138

    Article  PubMed  Google Scholar 

  • Cleary JD, Ranum LPW (2013) Repeat-associated non-ATG (RAN) translation in neurological disease. Hum Mol Genet. https://doi.org/10.1093/hmg/ddt371

    Article  PubMed  PubMed Central  Google Scholar 

  • Clement E, Mercuri E, Godfrey C et al (2008) Brain involvement in muscular dystrophies with defective dystroglycan glycosylation. Ann Neurol. https://doi.org/10.1002/ana.21482

    Article  PubMed  Google Scholar 

  • Crisafulli S, Sultana J, Fontana A, Salvo F, Messina S and Trifirò G (2020) Global epidemiology of Duchenne muscular dystrophy: an updated systematic review and meta-analysis. Orphanet J Rare Dis 15:1-20

  • Currier SC, Lee CK, Chang BS et al (2005) Mutations in POMT1 are found in a minority of patients with Walker-Warburg syndrome. Am J Med Genet Part A 133:53–57

    Google Scholar 

  • D’Angelo MG, Bresolin N (2006) Cognitive impairment in neuromuscular disorders. Muscle Nerve 34:16–33. https://doi.org/10.1002/mus.20535

    Article  CAS  PubMed  Google Scholar 

  • Darin N, Tulinius M (2000) Neuromuscular disorders in childhood: a descriptive epidemiological study from western Sweden. Neuromuscul Disord. https://doi.org/10.1016/S0960-8966(99)00055-3

    Article  PubMed  Google Scholar 

  • de Bernabé DB-V, Currier S, Steinbrecher A et al (2002) Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet 71:1033–1043

    Google Scholar 

  • de Bernabé DB-V, Van Bokhoven H, Van Beusekom E et al (2003) A homozygous nonsense mutation in the fukutin gene causes a Walker-Warburg syndrome phenotype. J Med Genet 40:845–848

    PubMed  Google Scholar 

  • De Bernabé DB-V, Voit T, Longman C et al (2004) Mutations in the FKRP gene can cause muscle-eye-brain disease and Walker-Warburg syndrome. J Med Genet 41:e61

    Google Scholar 

  • De La Chapelle A, Wright FA (1998) Linkage disequilibrium mapping in isolated populations: the example of Finland revisited. Proc Natl Acad Sci 95:12416–12423

    PubMed  PubMed Central  Google Scholar 

  • Deutekom JC, Wljmenga C, Tlenhoven EA, Gruter AM, Hewitt JE, Padberg GW, Ommen GJ, Hofker MH, Fronts RR et al (1993) FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit. Hum Mol Genet 2:2037–2042

    PubMed  Google Scholar 

  • Diesen C, Saarinen A, Pihko H et al (2004) POMGnT1 mutation and phenotypic spectrum in muscle-eye-brain disease. J Med Genet 41:e115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doorenweerd N (2020) Combining genetics, neuropsychology and neuroimaging to improve understanding of brain involvement in Duchenne muscular dystrophy - a narrative review. Neuromuscul Disord 30:437-442

  • Duan D, Goemans N, Takeda Si, Mercuri E and Aartsma-Rus A (2021) Duchenne muscular dystrophy. Nat Rev Dis Prim 7:1-19

  • Falsaperla R, Praticò AD, Ruggieri M, Parano E, Rizzo R, Corsello G, Vitaliti G and Pavone P (2016) Congenital muscular dystrophy: From muscle to brain. Ital J Pediatr 42:1-11

  • Fukuyama Y (1960) A peculiar from of congenital progressive muscular dystrophy. Report of fifteen cases. Pediatr Univ Tokyo 4:5–8

    Google Scholar 

  • Funakoshi M, Goto K, Arahata K (1998) Epilepsy and mental retardation in a subset of early onset 4q35-facioscapulohumeral muscular dystrophy. Neurology 50:1791–1794

    CAS  PubMed  Google Scholar 

  • Gençpınar P, Uyanık G, Haspolat Ş, Oygür N and Duman Ö (2019) Clinical and molecular manifestations of congenital muscular alpha-dystroglycanopathy due to an ISPD gene mutation. Neurophysiology 51:373-378. https://doi.org/10.1007/s11062-020-09831-y

  • Godfrey C, Clement E, Mein R et al (2007) Refining genotype-phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain. https://doi.org/10.1093/brain/awm212

    Article  PubMed  Google Scholar 

  • Goossens E, Steyaert J, De Die-Smulders C, Willekens D and Fryns JP (2000) Emotional and behavioral profile and child psychiatric diagnosis in the childhood type of myotonic dystrophy. Genet Couns 11:317-327

  • Grosso S, Mostardini R, Di Bartolo RM et al (2011) Epilepsy, speech delay, and mental retardation in facioscapulohumeral muscular dystrophy. Eur J Paediatr Neurol 15:456–460

    PubMed  Google Scholar 

  • Hamanaka K, Šikrová D, Mitsuhashi S et al (2020) Homozygous nonsense variant in LRIF1 associated with facioscapulohumeral muscular dystrophy. Neurology. https://doi.org/10.1212/WNL.0000000000009617

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamel J, Tawil R (2018) Facioscapulohumeral muscular dystrophy: update on pathogenesis and future treatments. Neurotherapeutics 15:863-871

  • Hehr U, Uyanik G, Gross C et al (2007) Novel POMGnT1 mutations define broader phenotypic spectrum of muscle–eye–brain disease. Neurogenetics 8:279–288

    CAS  PubMed  Google Scholar 

  • Hirotsune S, Takahara T, Sasaki N et al (1995) The reeler gene encodes a protein with an EGF–like motif expressed by pioneer neurons. Nat Genet. https://doi.org/10.1038/ng0595-77

    Article  PubMed  Google Scholar 

  • Hong SE, Shugart YY, Huang DT et al (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet. https://doi.org/10.1038/79246

    Article  PubMed  Google Scholar 

  • Hu H, Li J, Gagen CS et al (2011) Conditional knockout of protein O-mannosyltransferase 2 reveals tissue-specific roles of O-mannosyl glycosylation in brain development. J Comp Neurol. https://doi.org/10.1002/cne.22572

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishigaki K, Ihara C, Nakamura H et al (2018) National registry of patients with Fukuyama congenital muscular dystrophy in Japan. Neuromuscul Disord. https://doi.org/10.1016/j.nmd.2018.08.001

    Article  PubMed  Google Scholar 

  • Jensen BS, Willer T, Saade DN et al (2015) GMPPB-associated dystroglycanopathy: emerging common variants with phenotype correlation. Hum Mutat. https://doi.org/10.1002/humu.22898

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson NE, Heatwole CR (2012) Myotonic dystrophy: from bench to bedside. Semin Neurol. https://doi.org/10.1055/s-0032-1329202

    Article  PubMed  Google Scholar 

  • Jurado LAP, Coloma A, Cruces J (1999) Identification of a human homolog of the Drosophila rotated abdomen gene (POMT1) encoding a putative protein O-mannosyl-transferase, and assignment to human chromosome 9q34.1. Genomics 58:171-180 https://doi.org/10.1006/geno.1999.5819

  • Kano H, Kobayashi K, Tachikawa M et al (2002) Deficiency of α-dystroglycan in muscle-eye-brain disease. Biochem Biophys Res Commun. https://doi.org/10.1006/bbrc.2002.6608

    Article  PubMed  Google Scholar 

  • Kilroy E, Liu CY, Yan L, Kim YC, Dapretto M, Mendez MF and Wang DJ (2011) Relationships between cerebral blood flow and IQ in typically developing children and adolescents. J Cogn Sci 12:151 https://doi.org/10.17791/jcs.2011.12.2.151

  • Kobayashi K, Nakahori Y, Miyake M et al (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394:388–392

    CAS  PubMed  Google Scholar 

  • Kogelberg H, Chai W, Feizi T, Lawson AM (2001) NMR studies of mannitol-terminating oligosaccharides derived by reductive alkaline hydrolysis from brain glycoproteins. Carbohydr Res. https://doi.org/10.1016/S0008-6215(01)00051-9

    Article  PubMed  Google Scholar 

  • Konstantelou E, Pasparaki E, Tzilas V et al (2019) Neuromuscular diseases. ERS Monogr. https://doi.org/10.1183/2312508X.10021519

    Article  Google Scholar 

  • Kreis R, Wingeier K, Vermathen P et al (2011) Brain metabolite composition in relation to cognitive function and dystrophin mutations in boys with Duchenne muscular dystrophy. NMR Biomed. https://doi.org/10.1002/nbm.1582

    Article  PubMed  Google Scholar 

  • Laing NG (2012) Genetics of neuromuscular disorders. Crit Rev Clin Lab Sci 49:33-48

  • Landouzy M, Dejerine J. De la myopathie atrophique progressive (myopathie héréditaire, débutant dans l'enfance par la face, sans altération du système nerveux). Comptes Rendus de l'Académie des Sciences. 1884;98:53–55. Landouzy L, Dejerine J (1884) De la myopathie atrophique progressive (myopathie héréditaire débutant, dans l’enfance, par la face, sans altération du système nerveux. Comptes Rendus de l'Académie des Sciences 98:53–55

  • Lee JE, Cooper TA (2009) Pathogenic mechanisms of myotonic dystrophy. Biochem Soc Trans. https://doi.org/10.1042/BST0371281

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemmers RJLF, Tawil R, Petek LM et al (2012) Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat Genet 44:1370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Wang Y, Yang F et al (2021) GMPPB-congenital disorders of glycosylation associate with decreased enzymatic activity of GMPPB. Mol Biomed. https://doi.org/10.1186/s43556-021-00027-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Lochter A, Vaughan L, Kaplony A et al (1991) J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth. J Cell Biol. https://doi.org/10.1083/jcb.113.5.1159

    Article  PubMed  Google Scholar 

  • López-Martínez A, Soblechero-Martín P, de-la-Puente-Ovejero L, Nogales-Gadea G and Arechavala-Gomeza V (2020) An overview of alternative splicing defects implicated in myotonic dystrophy type i. Genes 11:1109

  • Mah JK, Chen Y-W (2018) A pediatric review of facioscapulohumeral muscular dystrophy. J Pediatr Neurol JPN 16:222

    PubMed  Google Scholar 

  • Maroofian R, Riemersma M, Jae LT et al (2017) B3GALNT2 mutations associated with non-syndromic autosomal recessive intellectual disability reveal a lack of genotype-phenotype associations in the muscular dystrophy-dystroglycanopathies. Genome Med. https://doi.org/10.1186/s13073-017-0505-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuzaka T, Sakuragawa N, Terasawa K, Kuwabara H (1986) Facioscapulohumeral dystrophy associated with mental retardation, hearing loss, and tortuosity of retinal arterioles. J Child Neurol 1:218–223

    CAS  PubMed  Google Scholar 

  • Mattos MK, Chang A, Pitcher K, Whitt C, Ritterband LM and Quigg MS (2021) A review of insomnia treatments for patients with mild cognitive impairment. Aging Dis

  • Meola G (2020) Myotonic dystrophy type 2: The 2020 update. Acta Myol 39:222

  • Meola G, Cardani R (2015) Myotonic dystrophy type 2: an update on clinical aspects, genetic and pathomolecular mechanism. J Neuromuscul Dis. https://doi.org/10.3233/JND-150088

    Article  PubMed  PubMed Central  Google Scholar 

  • Meola G, Sansone V, Perani D et al (1999) Reduced cerebral blood flow and impaired visual-spatial function in proximal myotonic myopathy. Neurology. https://doi.org/10.1212/wnl.53.5.1042

    Article  PubMed  Google Scholar 

  • Meola G, Sansone V, Perani D et al (2003) Executive dysfunction and avoidant personality trait in myotonic dystrophy type 1 (DM-1) and in proximal myotonic myopathy (PROMM/DM-2). Neuromuscul Disord. https://doi.org/10.1016/S0960-8966(03)00137-8

    Article  PubMed  Google Scholar 

  • Mercuri E, Messina S, Bruno C et al (2009) Congenital muscular dystrophies with defective glycosylation of dystroglycan: a population study. Neurology 72:1802–1809. https://doi.org/10.1212/01.wnl.0000346518.68110.60

    Article  CAS  PubMed  Google Scholar 

  • Mercuri E, Topaloglu H, Brockington M et al (2006) Spectrum of brain changes in patients with congenital muscular dystrophy and FKRP gene mutations. Arch Neurol. https://doi.org/10.1001/archneur.63.2.251

    Article  PubMed  Google Scholar 

  • Messina S, Bruno C, Moroni I et al (2010) Congenital muscular dystrophies with cognitive impairment: a population study. Neurology 75:898–903

    CAS  PubMed  Google Scholar 

  • Mitsuhashi S, Ohkuma A, Talim B et al (2011) A congenital muscular dystrophy with mitochondrial structural abnormalities caused by defective de novo phosphatidylcholine biosynthesis. Am J Hum Genet. https://doi.org/10.1016/j.ajhg.2011.05.010

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyashita MUT, Ohtsuka Y, Okamura-Oho Y et al (2001) Extended polyglutamine selectively interacts with caspase-8 and -10 in nuclear aggregates. Cell Death Differ. https://doi.org/10.1038/sj.cdd.4400819

    Article  PubMed  Google Scholar 

  • Mochizuki H, Miyatake S, Suzuki M et al (2008) Mental retardation and lifetime events of Duchenne muscular dystrophy in Japan. Intern Med. https://doi.org/10.2169/internalmedicine.47.0907

    Article  PubMed  Google Scholar 

  • Mohamadian M, Naseri M, Ghandil P et al (2020) The first report of two homozygous sequence variants in FKRP and SELENON genes associated with syndromic congenital muscular dystrophy in Iran: Further expansion of the clinical phenotypes. J Gene Med. https://doi.org/10.1002/jgm.3265

    Article  PubMed  Google Scholar 

  • Montagnese F, Klupp E, Karampinos DC et al (2017) Two patients with GMPPB mutation: the overlapping phenotypes of limb-girdle myasthenic syndrome and limb-girdle muscular dystrophy dystroglycanopathy. Muscle Nerve. https://doi.org/10.1002/mus.25485

    Article  PubMed  Google Scholar 

  • Moore SA, Saito F, Chen J et al (2002) Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature. https://doi.org/10.1038/nature00838

    Article  PubMed  Google Scholar 

  • Mostacciuolo ML, Miorin M, Martinello F et al (1996) Genetic epidemiology of congenital muscular dystrophy in a sample from north-east Italy. Hum Genet 97:277–279

    CAS  PubMed  Google Scholar 

  • Mul K, Lassche S, Voermans NC et al (2016) What’s in a name? The clinical features of facioscapulohumeral muscular dystrophy. Pract Neurol 16:201–207

    PubMed  Google Scholar 

  • Murphy AP, Straub V (2015) The classification, natural history and treatment of the limb girdle muscular dystrophies. J Neuromuscul Dis 2:S7-S19

  • Naidoo M, Anthony K (2020) Dystrophin Dp71 and the neuropathophysiology of Duchenne muscular dystrophy. Mol Neurobiol 57:1748-1767

  • Nardes F, Araújo APQC, Ribeiro MG (2012) O retardo mental na distrofia muscular de Duchenne. J Pediatr (rio j) 88:6–16

    Google Scholar 

  • Natarajan N and Ionita C (2018) 64 - Neonatal Neuromuscular Disorders. In: Gleason CA and Juul SE (eds) Avery's Diseases of the Newborn (Tenth Edition), Elsevier, Philadelphia pp. 952-960.e2

  • Norwood FLM, Harling C, Chinnery PF, Eagle M, Bushby K, Straub V (2009) Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population. Brain 132:3175–3186. https://doi.org/10.1093/brain/awp236

    Article  PubMed  Google Scholar 

  • Oestergaard ST, Stojkovic T, Dahlqvist JR, Bouchet-Seraphin C, Nectoux J, Leturcq F, Cossée M, Solé G, Thomsen C, Krag TO and Vissing J (2016) Muscle involvement in limb-girdle muscular dystrophy with GMPPB deficiency (LGMD2T). Neurol Genet 2:e112. https://doi.org/10.1212/nxg.0000000000000112

  • Østergaard ST, Johnson K, Stojkovic T et al (2018) Limb girdle muscular dystrophy due to mutations in POMT2. J Neurol Neurosurg Psychiatry 89:506–512

    PubMed  Google Scholar 

  • Ozimski LL, Sabater-Arcis M, Bargiela A, Artero R (2021) The hallmarks of myotonic dystrophy type 1 muscle dysfunction. Biol Rev. https://doi.org/10.1111/brv.12674

    Article  PubMed  Google Scholar 

  • Paprocka J, Jezela-Stanek A, Tylki-Szymańska A, Grunewald S (2021) Congenital disorders of glycosylation from a neurological perspective. Brain Sci 11:88

  • Parisi L, Di Filippo T, Glorioso P, La Grutta S, Epifanio MS and Roccella M (2018) Autism spectrum disorders in children affected by Duchenne muscular dystrophy. Minerva Pediatr.70:233-239. https://doi.org/10.23736/s0026-4946.16.04380-2

  • Parsamanesh N, Safarpour H, Etesam S et al (2019) Identification and in silico characterization of a novel point mutation within the phosphatidylinositol glycan anchor biosynthesis class G gene in an Iranian family with intellectual disability. J Mol Neurosci 69:538–545

    CAS  PubMed  Google Scholar 

  • Peric S, Rakocevic-Stojanovic V, Meola G (2021) Cerebral involvement and related aspects in myotonic dystrophy type 2. Neuromuscul Disord. https://doi.org/10.1016/j.nmd.2021.06.002

    Article  PubMed  Google Scholar 

  • Perini GI, Menegazzo E, Ermani M et al (1999) Cognitive impairment and (CTG)n expansion in myotonic dystrophy patients. Biol Psychiatry. https://doi.org/10.1016/S0006-3223(99)00016-5

    Article  PubMed  Google Scholar 

  • Peristeri E, Aloizou A-M, Keramida P, Tsouris Z, Siokas V, Mentis A-FA and Dardiotis E (2020) Cognitive deficits in myopathies. Int J Mol Sci 21:3795

  • Rae C, Scott RB, Thompson CH et al (1998) Brain biochemistry in Duchenne muscular dystrophy: A 1H magnetic resonance and neuropsychological study. J Neurol Sci. https://doi.org/10.1016/S0022-510X(98)00190-7

    Article  PubMed  Google Scholar 

  • Rasic MV, Vojinovic D, Pesovic J et al (2014) Intellectual ability in the Duchenne muscular dystrophy and dystrophin gene mutation location. Balk J Med Genet 17:25–35

    Google Scholar 

  • Reed UC (2009) Congenital muscular dystrophy - part II: a review of pathogenesis and therapeutic perspectives. Arq Neuropsiquiatr 67:343-362. https://doi.org/10.1590/S0004-282X2009000200035

  • Ricotti V, Mandy WPL, Scoto M et al (2016) Neurodevelopmental, emotional, and behavioural problems in Duchenne muscular dystrophy in relation to underlying dystrophin gene mutations. Dev Med Child Neurol. https://doi.org/10.1111/dmcn.12922

    Article  PubMed  Google Scholar 

  • Rodríguez Cruz PM, Belaya K, Basiri K et al (2016) Clinical features of the myasthenic syndrome arising from mutations in GMPPB. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2016-313163

    Article  PubMed  Google Scholar 

  • Rojas-Marcos I (2019) Muscular dystrophies. Med. https://doi.org/10.1016/j.med.2019.04.003

    Article  Google Scholar 

  • Roll L, Faissner A (2019) Tenascins in CNS lesions. Semin. Cell Dev Biol 89:118-124. https://doi.org/10.1016/j.semcdb.2018.09.012

  • Roscioli T, Kamsteeg E-J, Buysse K et al (2012) Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of α-dystroglycan. Nat Genet 44:581–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggiero L, Mele F, Manganelli F et al (2020) Phenotypic variability among patients with D4Z4 reduced allele facioscapulohumeral muscular dystrophy. JAMA Netw Open 3:e204040

    PubMed  PubMed Central  Google Scholar 

  • Saito F, Matsumura K (2011) Fukuyama-type congenital muscular dystrophy and defective glycosylation of α-dystroglycan. Skelet Muscle 1:22. https://doi.org/10.1186/2044-5040-1-22

  • Saito K (2006) Prenatal diagnosis of Fukuyama congenital muscular dystrophy. Prenat Diagnosis Publ Affil with Int Soc Prenat Diagnosis 26:415–417

    Google Scholar 

  • Saito Y, Miyashita S, Yokoyama A et al (2007) Facioscapulohumeral muscular dystrophy with severe mental retardation and epilepsy. Brain Dev 29:231–233

    PubMed  Google Scholar 

  • Sanga S, Ghosh A, Kumar K et al (2021) Whole-exome analyses of congenital muscular dystrophy and congenital myopathy patients from India reveal a wide spectrum of known and novel mutations. Eur J Neurol. https://doi.org/10.1111/ene.14616

    Article  PubMed  Google Scholar 

  • Santavuori P, Leisti J, Kruus S (1977) Muscle, eye and brain disease: a new syndrome. Neuropadiatrie 8:553

    Google Scholar 

  • Saredi S, Gibertini S, Ardissone A et al (2014) A fourth case of POMT2-related limb girdle muscle dystrophy with mild reduction of α-dystroglycan glycosylation. Eur J Paediatr Neurol. https://doi.org/10.1016/j.ejpn.2013.10.005

    Article  PubMed  Google Scholar 

  • Sarkozy A, Torelli S, Mein R et al (2018) Mobility shift of beta-dystroglycan as a marker of GMPPB gene-related muscular dystrophy. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2017-316956

    Article  PubMed  Google Scholar 

  • Schätzl T, Kaiser L, Deigner HP (2021) Facioscapulohumeral muscular dystrophy: genetics, gene activation and downstream signalling with regard to recent therapeutic approaches: an update. Orphanet J Rare Dis 16:129. https://doi.org/10.1186/s13023-021-01760-1

  • Seo BA, Cho T, Lee DZ et al (2018) LARGE, an intellectual disability-associated protein, regulates AMPA-type glutamate receptor trafficking and memory. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1805060115

  • Sewry CA (2010) Muscular dystrophies: an update on pathology and diagnosis. Acta Neuropathol 120:343-358. https://doi.org/10.1007/s00401-010-0727-5

  • Silan F, Yoshioka M, Kobayashi K et al (2003) A new mutation of the fukutin gene in a non-Japanese patient. Ann Neurol off J Am Neurol Assoc Child Neurol Soc 53:392–396

    CAS  Google Scholar 

  • Silfeler I, Arica V, Davran R et al (2012) Fukuyama congenital muscular dystrophy. Pakistan J Med Sci. https://doi.org/10.1016/j.nmd.2019.06.457

    Article  Google Scholar 

  • Song D, Dai Y, Chen X et al (2020) Genetic variations and clinical spectrum of dystroglycanopathy in a large cohort of Chinese patients. Clin Genet. https://doi.org/10.1111/cge.13886

    Article  PubMed  Google Scholar 

  • Spalice A, Parisi P, Nicita F et al (2009) Neuronal migration disorders: clinical, neuroradiologic and genetics aspects. Acta Paediatr Int J Paediatr 98:421–433. https://doi.org/10.1111/j.1651-2227.2008.01160.x

    Article  CAS  Google Scholar 

  • Stokes M, Varughese N, Iannaccone S, Castro D (2019) Clinical and genetic characteristics of childhood-onset myotonic dystrophy. Muscle Nerve. https://doi.org/10.1002/mus.26716

    Article  PubMed  Google Scholar 

  • Suthar R, Angurana SK, Singh U, Singh P (2018) Walker-Warburg syndrome. Neurol India. https://doi.org/10.4103/0028-3886.246262

    Article  PubMed  Google Scholar 

  • Tadayoni R, Rendon A, Soria-Jasso LE, Cisneros B (2012) Dystrophin Dp71: the smallest but multifunctional product of the duchenne muscular dystrophy gene. Mol Neurobiol 45:43-60. https://doi.org/10.1007/s12035-011-8218-9

  • Takeda S, Kondo M, Sasaki J et al (2003) Fukutin is required for maintenance of muscle integrity, cortical histiogenesis and normal eye development. Hum Mol Genet 12:1449–1459. https://doi.org/10.1093/hmg/ddg153

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi K, Kobayashi K, Saito K et al (2003) Worldwide distribution and broader clinical spectrum of muscle–eye–brain disease. Hum Mol Genet 12:527–534

    CAS  PubMed  Google Scholar 

  • Tawil R (2004) Facioscapulohumeral muscular dystrophy. Curr Neurol Neurosci Rep 4:51–54

    PubMed  Google Scholar 

  • Teber S, Sezer T, Kafalı M et al (2008) Severe muscle–eye–brain disease is associated with a homozygous mutation in the POMGnT1 gene. Eur J Paediatr Neurol 12:133–136

    PubMed  Google Scholar 

  • Thornton CA (2014) Myotonic dystrophy. Neurol Clin 32:705-719

  • Tian WT, Zhou HY, Zhan FX et al (2019) Lysosomal degradation of GMPPB is associated with limb-girdle muscular dystrophy type 2T. Ann Clin Transl Neurol. https://doi.org/10.1002/acn3.787

    Article  PubMed  PubMed Central  Google Scholar 

  • Tonekaboni SH (2016) Congenital muscular dystrophy: an overview. Genet Third Millenn 14:0-0

  • Topaloglu H (2018) Muscular dystrophies with mental retardation. Proceedings of the XIII Congress of mediterranean society of Myology: Avanos, Turkey June 27-29, 2018. Acta myologica 37:129-183

  • Tuuli MG and Odibo AO (2018) 38 - Walker-Warburg Syndrome. In: Copel JA, D'Alton ME, Feltovich H, Gratacós E, Krakow D, Odibo AO, Platt LD and Tutschek B (eds) Obstetric Imaging: Fetal Diagnosis and Care (Second Edition), Elsevier, pp. 189-190.e1. https://doi.org/10.1016/B978-0-323-44548-1.00038-3

  • Udd B, Krahe R (2012) The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol 11:891-905. https://doi.org/10.1016/S1474-4422(12)70204-1

  • Vajsar J, Schachter H (2006) Walker-Warburg syndrome. Orphanet J Rare Dis 1:1–5

    Google Scholar 

  • van den Boogaard ML, Lemmers RJLF, Balog J et al (2016) Mutations in DNMT3B modify epigenetic repression of the D4Z4 repeat and the penetrance of facioscapulohumeral dystrophy. Am J Hum Genet 98:1020–1029

    PubMed  PubMed Central  Google Scholar 

  • van Overveld PGM, Lemmers RJFL, Sandkuijl LA et al (2003) Hypomethylation of D4Z4 in 4q-linked and non-4q-linked facioscapulohumeral muscular dystrophy. Nat Genet 35:315–317

    PubMed  Google Scholar 

  • van Reeuwijk J, Grewal PK, Salih MAM et al (2007) Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome. Hum Genet 121:685–690

    PubMed  PubMed Central  Google Scholar 

  • Van Reeuwijk J, Olderode-Berends MJW, Van den Elzen C et al (2010) A homozygous FKRP start codon mutation is associated with Walker-Warburg syndrome, the severe end of the clinical spectrum. Clin Genet 78:275–281

    PubMed  Google Scholar 

  • Waldrop MA, Flanigan KM (2019) Update in Duchenne and Becker muscular dystrophy. Curr Opin Neurol 32:722–727

    CAS  PubMed  Google Scholar 

  • Walker EA (1942) Lissencephaly. Arch Neurol Psychiatry 48:13–29

    Google Scholar 

  • Wallace SE, Conta JH, Winder TL et al (2014) A novel missense mutation in POMT1 modulates the severe congenital muscular dystrophy phenotype associated with POMT1 nonsense mutations. Neuromuscul Disord 24:312–320

    PubMed  PubMed Central  Google Scholar 

  • Warburg M (1978) Hydrocephaly, congenital retinal nonattachment, and congenital falciform fold. Am J Ophthalmol 85:88–94

    CAS  PubMed  Google Scholar 

  • Wicklund MP (2013) The muscular dystrophies. Contin Lifelong Learn Neurol 19:1535-1570. https://doi.org/10.1212/01.CON.0000440659.41675.8b

  • Wicklund MP (2019) The limb-girdle muscular dystrophies. Contin Lifelong Learn Neurol 25:1599-1618. https://doi.org/10.1212/CON.0000000000000809

  • Wingo TS, Liu Y, Gerasimov ES et al (2021) Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nat Neurosci. https://doi.org/10.1038/s41593-021-00832-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolfe LA, Krasnewich D (2013) Congenital disorders of glycosylation and intellectual disability. Dev Disabil Res Rev 17:211-225. https://doi.org/10.1002/ddrr.1115

  • Woo J, Lee HW, Park JS (2019) Differences in the pattern of cognitive impairments between juvenile and adult onset myotonic dystrophy type 1. J Clin Neurosci. https://doi.org/10.1016/j.jocn.2019.07.029

    Article  PubMed  Google Scholar 

  • Yanagisawa A, Bouchet C, Quijano-Roy S et al (2009) POMT2 intragenic deletions and splicing abnormalities causing congenital muscular dystrophy with mental retardation. Eur J Med Genet 52:201–206

    PubMed  Google Scholar 

  • Yang H, Kobayashi K, Wang S et al (2015) Founder mutation causes classical Fukuyama congenital muscular dystrophy (FCMD) in Chinese patients. Brain Dev. https://doi.org/10.1016/j.braindev.2015.02.010

    Article  PubMed  Google Scholar 

  • Yİş ULU, Di̇ni̇z G, Hazan F et al (2018) Childhood onset limb-girdle muscular dystrophies in the Aegean part of Turkey. Acta Myol 37:210

    PubMed  PubMed Central  Google Scholar 

  • Yoshida A, Kobayashi K, Manya H et al (2001) Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell 1:717–724. https://doi.org/10.1016/S1534-5807(01)00070-3

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka M, Higuchi Y (2005) Long-term prognosis of epilepsies and related seizure disorders in Fukuyama-type congenital muscular dystrophy. J Child Neurol. https://doi.org/10.1177/08830738050200041901

    Article  PubMed  Google Scholar 

  • Zapata-Aldana E, Ceballos-Sáenz D, Hicks R, Campbell C (2018) Prenatal, neonatal, and early childhood features in congenital myotonic dystrophy. J Neuromuscul Dis. https://doi.org/10.3233/JND-170277

    Article  PubMed  Google Scholar 

  • Zheng L, Liu Z, Wang Y et al (2021) Cryo-EM structures of human GMPPA–GMPPB complex reveal how cells maintain GDP-mannose homeostasis. Nat Struct Mol Biol. https://doi.org/10.1038/s41594-021-00591-9

    Article  PubMed  Google Scholar 

  • Zivkovic SA, Clemens PR (2015) Muscular dystrophy. In: Neurobiology of Brain Disorders: Biological Basis of Neurological and Psychiatric Disorders Elsevier, pp. 151-166. https://doi.org/10.1016/B978-0-12-398270-4.00011-2

  • Zouvelou V, Rentzos M, Zalonis I, Filippopolitis K, Manta P, Evdokimidis I (2008) Cognitive impairment and cerebellar atrophy in typical onset 4q35 fascioscapulohumeral dystrophy. Muscle and Nerve 38:1523-1524. https://doi.org/10.1002/mus.21100

  • Zu T, Gibbens B, Doty NS et al (2011) Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1013343108

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. Mohamadian and P. Ghandil designed the article contents. M. Mohamadian, M. Rastegr, and N. Parsamanesh wrote the original manuscript. A. Ghadiri and M. Naseri made revisions to the manuscript. All the authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Malihe Mohamadian.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamadian, M., Rastegar, M., Pasamanesh, N. et al. Clinical and Molecular Spectrum of Muscular Dystrophies (MDs) with Intellectual Disability (ID): a Comprehensive Overview. J Mol Neurosci 72, 9–23 (2022). https://doi.org/10.1007/s12031-021-01933-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-021-01933-4

Keywords

Navigation