Skip to main content

Advertisement

Log in

Expression of ASIC3 in the Trigeminal Nucleus Caudalis Plays a Role in a Rat Model of Recurrent Migraine

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Acid-sensing ion channel 3 (ASIC3) is abundant in the trigeminal nervous system and is most sensitive to a slight pH decrease. Recent studies have indicated that ASIC3 in the peripheral trigeminal ganglia is likely involved in the pathogenesis of migraine pain. However, it is unclear whether this receptor plays a role in recurrent migraine, namely, migraine chronicity. Here, we aimed to investigate the role of ASIC3 in an animal model of recurrent migraine (RM). In this study, we established a rat model of RM through repeated administration of inflammatory soup (IS) onto the dura. Then, we tested the mechanical pain thresholds of the face and hindpaws by von Frey filaments. qRT-PCR, Western blot and immunofluorescence labelling were used to detect the expression and localization of ASIC3 in the trigeminal nucleus caudalis (TNC). The protein levels of calcitonin gene-related peptide (CGRP), its receptor component receptor activity modifying protein 1 (RAMP1) and c-Fos were analysed following treatment with the ASIC3 inhibitor APETx2 and activator 2-guanidine-4-methylquinazoline (GMQ). We found decreased pain thresholds after repeated dural inflammatory stimulation, which suggested the establishment of an RM model. Based on this model, we observed elevated expression of ASIC3 in the TNC group compared to that in the Sham group. ASIC3 was primarily expressed in neurons but not in astrocytes of the TNC. Moreover, APETx2 attenuated tactile allodynia and significantly decreased the expression of c-Fos, CGRP and RAMP1, while GMQ aggravated these effects compared to those observed in the IS + vehicle group. These findings indicate a critical role of ASIC3 channels in the pathophysiology of RM, and ASIC3 might represent a potential therapeutic target to prevent the progression of migraine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ASIC3:

Acid-sensing ion channel 3

APETx2:

Anthopleura elegantissima

CGRP:

Calcitonin gene-related peptide

C2:

Cervical spinal 2

CNS:

Central nervous system

DMSO:

Dimethyl sulfoxide

GMQ:

2-Guanidine-4-methylquinazoline

IS:

Inflammatory soup

PBS:

Phosphate-buffered solution

PGE2:

Prostaglandin E2

qRT-PCR:

Quantitative real-time reverse transcription-polymerase chain reaction

RM:

Recurrent migraine

RAMP1:

Receptor activity modifying protein 1

SP:

Substance P

TNC:

Trigeminal nucleus caudalis

TRPV1:

Transient receptor potential vanilloid type 1

References

  • Bernstein C, Burstein R (2012) Sensitization of the trigeminovascular pathway: perspective and implications to migraine pathophysiology. J Clin Neurol 8(2):89–99

    Article  PubMed  PubMed Central  Google Scholar 

  • Bigal ME, Serrano D, Reed M, Lipton RB (2008a) Chronic migraine in the population: burden, diagnosis, and satisfaction with treatment. Neurology 71(8):559–566

    Article  PubMed  Google Scholar 

  • Bigal ME, Ashina S, Burstein R, Reed ML, Buse D, Serrano D, Serrano D, Lipton RB, AMPP Group (2008b) Prevalence and characteristics of allodynia in headache sufferers: a population study. Neurology 70:1525–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bomberger JM, Spielman WS, Hall CS, Weinman EJ, Parameswaran N (2005) Receptor activity-modifying protein (RAMP) isoform-specific regulation of adrenomedullin receptor trafficking by NHERF-1. J Biol Chem 280(25):23926–23935

    Article  CAS  PubMed  Google Scholar 

  • Boyer N, Dallel R, Artola A, Monconduit L (2014) General trigeminospinal central sensitization and impaired descending pain inhibitory controls contribute to migraine progression. Pain 155(7):1196–1205

    Article  PubMed  Google Scholar 

  • Burstein R, Cutrer M, Yarnitsky D (2000) The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain 123(Pt 8):1703–1709

    Article  PubMed  Google Scholar 

  • Cao Q, Wang W, Gu J, Jiang G, Wang K, Xu Z, Li J, Chen G, Wang X (2016) Elevated expression of acid-sensing ion channel 3 inhibits epilepsy via activation of interneurons. Mol Neurobiol 53(1):485–498

    Article  CAS  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824

    Article  CAS  PubMed  Google Scholar 

  • Chen CH, Hsu YT, Chen CC, Huang RC (2009) Acid-sensing ion channels in neurons of the rat suprachiasmatic nucleus. J Physiol 587(Pt 8):1727–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cottrell GS, Padilla B, Pikios S, Roosterman D, Steinhoff M, Grady EF, Bunnett NW (2007) Post-endocytic sorting of calcitonin receptor-like receptor and receptor activity-modifying protein 1. J Biol Chem 282(16):12260–12271

    Article  CAS  PubMed  Google Scholar 

  • Deval E, Lingueglia E (2015) Acid-sensing ion channels and nociception in the peripheral and central nervous systems. Neuropharmacology 94:49–57

    Article  CAS  PubMed  Google Scholar 

  • Deval E, Gasull X, Noël J, Salinas M, Baron A, Diochot S, Lingueglia E (2010) Acid-sensing ion channels (ASICs): pharmacology and implication in pain. Pharmacol Ther 128(3):549–558

    Article  CAS  PubMed  Google Scholar 

  • Deval E, Noël J, Gasull X, Delaunay A, Alloui A, Friend V, Eschalier A, Lazdunski M, Lingueglia E (2011) Acid-sensing ion channels in postoperative pain. J Neurosci 31(16):6059–6066

    Article  CAS  PubMed  Google Scholar 

  • Du J, Reznikov LR, Price MP, Zha XM, Lu Y, Moninger TO, Wemmie JA, Welsh MJ (2014) Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala. Proc Natl Acad Sci U S A 111(24):8961–8966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durham PL, Masterson CG (2013) Two mechanisms involved in trigeminal CGRP release: implications for migraine treatment. Headache 53(1):67–80

    Article  PubMed  Google Scholar 

  • Dussor G (2015) ASICs as therapeutic targets for migraine. Neuropharmacology 94:64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haut SR, Bigal ME, Lipton RB (2006) Chronic disorders with episodic manifestations: focus on epilepsy and migraine. Lancet Neurol 5(2):148–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho TW, Edvinsson L, Goadsby PJ (2010) CGRP and its receptors provide new insights into migraine pathophysiology. Nat Rev Neurol 6(10):573–582

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi M, Kolker SJ, Burnes LA, Walder RY, Sluka KA (2008) Role of ASIC3 in the primary and secondary hyperalgesia produced by joint inflammation in mice. Pain 137(3):662–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang MU, Park JW, Kho HS, Chung SC, Chung JW (2015) Plasma and saliva levels of nerve growth factor and neuropeptides in chronic migraine patients. Oral Dis 17(2):187–193

    Article  Google Scholar 

  • Karczewski J, Spencer RH, Garsky VM, Liang A, Leitl MD, Cato MJ, Cook SP, Kane S, Urban MO (2010) Reversal of acid-induced and inflammatory pain by the selective ASIC3 inhibitor, APETx2. Br J Pharmacol 161(4):950–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreple CJ, Lu Y, Taugher RJ, Schwager-Gutman AL, Du J, Stump M, Wang Y, Ghobbeh A, Fan R, Cosme CV, Sowers LP, Welsh MJ, Radley JJ, LaLumiere RT, Wemmie JA (2014) Acid-sensing ion channels contribute to synaptic transmission and inhibit cocaine-evoked plasticity. Nat Neurosci 17(8):1083–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei Z, Sami Shaikh A, Zheng W, Yu X, Yu J, Li J (2016) Non-proton ligand-sensing domain of acid-sensing ion channel 3 is required for itch sensation. J Neurochem 139(6):1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Li YF, Wu LJ, Li Y, Xu L, Xu TL (2003) Mechanisms of H +, modulation of glycinergic response in rat sacral dorsal commissural neurons. J Physiol 552(Pt 1):73–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WG, Yu Y, Zhang ZD, Cao H, Xu TL (2010) ASIC3 channels integrate agmatine and multiple inflammatory signals through the nonproton ligand sensing domain. Mol Pain 6(1):88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lipton RB, Bigal ME, Ashina S, Burstein R, Silberstein S, Reed ML, Serrano D, Stewart WF, American Migraine Prevalence Prevention Advisory Group (2008) Cutaneous allodynia in the migraine population. Ann Neurol 63:148–158

    Article  PubMed  PubMed Central  Google Scholar 

  • Masashi I, Masahiko I, Ji Q, Tani T (2012) Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis. J Biomed Sci 19:77

    Article  CAS  Google Scholar 

  • Melo-Carrillo A, Lopez-Avila A (2013) A chronic animal model of migraine induced by repeated meningeal nociception, characterized by a behavioral and pharmacological approach. Cephalalgia 33(13):1096–1105

    Article  PubMed  Google Scholar 

  • Meng QY, Wang W, Chen XN, Xu TL, Zhou JN (2009) Distribution of acid-sensing ion channel 3 in the rat hypothalamus. Neuroscience 159(3):1126–1134

    Article  CAS  PubMed  Google Scholar 

  • Mercado F, López IA, Acuna D, Vega R, Soto E (2006) Acid-sensing ionic channels in the rat vestibular endorgans and ganglia. J Neurophysiol 96(3):1615–1624

    Article  CAS  PubMed  Google Scholar 

  • Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394(6689):192–195

    Article  PubMed  Google Scholar 

  • Mitsikostas DD, Sanchez del Rio M (2001) Receptor systems mediating c-fos expression within trigeminal nucleus caudalis in animal models of migraine. Brain Res Brain Res Rev 35(1):20–35

    Article  CAS  PubMed  Google Scholar 

  • Oshinsky ML, Gomonchareonsiri S (2007) Episodic dural stimulation in awake rats: a model for recurrent headache. Headache 47(7):1026–1036

    Article  PubMed  PubMed Central  Google Scholar 

  • Riesco N, Cernudamorollón E, Pascual J (2017) Neuropeptides as a marker for chronic headache. Curr Pain Headache Rep 21(4):18

    Article  PubMed  Google Scholar 

  • Ryu S, Liu B, Yao J, Fu Q, Qin F (2007) Uncoupling proton activation of vanilloid receptor TRPV1. J Neurosci 27(47):12797–12807

    Article  CAS  PubMed  Google Scholar 

  • Salinas M, Lazdunski ME (2009) Structural elements for the generation of sustained currents by the acid pain sensor ASIC3. J Biol Chem 284(46):31851–31859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarchielli P, Pini LA, Coppola F, Rossi C, Baldi A, Mancini ML, Calabresi P (2007) Endocannabinoids in chronic migraine: CSF findings suggest a system failure. Neuropsychopharmacology 32(6):1384–1390

    Article  CAS  PubMed  Google Scholar 

  • Seybold VS (2009) The role of peptides in central sensitization. Handb Exp Pharmacol 194:451–491

    Article  CAS  Google Scholar 

  • Sluka KA, Radhakrishnan R, Benson CJ, Eshcol JO, Price MP, Babinski K, Audette KM, Yeomans DC, Wilson SP (2007) ASIC3 in muscle mediates mechanical, but not heat, hyperalgesia associated with muscle inflammation. Pain 129(1–2):102–112

    Article  PubMed  Google Scholar 

  • Storer RJ, Supronsinchai W, Srikiatkhachorn A (2015) Animal models of chronic migraine. Curr Pain Headache Rep 19(1):467

    Article  PubMed  Google Scholar 

  • Strassman AM, Raymond SA, Burstein R (1996) Sensitization of meningeal sensory neurons and the origin of headaches. Nature 384(6609):560–564

    Article  CAS  PubMed  Google Scholar 

  • Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21(3):531–543

    Article  CAS  PubMed  Google Scholar 

  • Traynelis SF, Cull-Candy SG (1990) Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345(6273):347–350

    Article  CAS  PubMed  Google Scholar 

  • Uddman R, Tajti J, Hou M, Sundler F, Edvinsson L (2002) Neuropeptide expression in the human trigeminal nucleus caudalis and in the cervical spinal cord C1 and C2. Cephalalgia 22(2):112–116

    Article  CAS  PubMed  Google Scholar 

  • Walder RY, Gautam M, Wilson SP, Benson CJ, Sluka KA (2011) Selective targeting of ASIC3 using artificial miRNAs inhibits primary and secondary hyperalgesia after muscle inflammation. Pain 152(10):2348–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldmann R, Bassilana F, de Weille J, Champigny G, Heurteaux C, Lazdunski M (1997) Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J Biol Chem 272(34):20975–20978

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Wang S, Qin G, Xie J, Tan G, Zhou J, Chen L (2017) Protein kinase C γ contributes to central sensitization in a rat model of chronic migraine. J Mol Neurosci 63(2):131–141

    Article  CAS  PubMed  Google Scholar 

  • Yagi J, Wenk HN, Naves LA, McCleskey EW (2006) Sustained currents through ASIC3 ion channels at the modest pH changes that occur during myocardial ischemia. Circ Res 99(5):501–509

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Wei X, Bischoff C, Edelmayer RM, Dussor G (2013) pH-evoked dural afferent signaling is mediated by ASIC3 and is sensitized by mast cell mediators. Headache 53(8):1250–1261

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Chen Z, Li WG, Cao H, Feng EG, Yu F, Liu H, Jiang H, Xu TL (2010) A nonproton ligand sensor in the acid-sensing ion channel. Neuron 68(1):61–72

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Dickerson IM, Russo AF (2006) Calcitonin gene-related peptide receptor activation by receptor activity-modifying protein-1 gene transfer to vascular smooth muscle cells. Endocrinology 147(4):1932–1940

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Winborn CS, Marquez de Prado B, Russo AF (2007) Sensitization of calcitonin gene-related peptide receptors by receptor activity-modifying protein-1 in the trigeminal ganglion. J Neurosci 27(10):2693–2703

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 81671093 and 81500957) and the District Science and Technology Projects of Yuzhong Chongqing (No. 20160107).

Author information

Authors and Affiliations

Authors

Contributions

LXC and JYZ developed the experimental design. LXC, GCQ and WHY oversaw the experiments. SW, CYL and BXW performed the experiments. SW drafted the manuscript. LXC revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Li-Xue Chen.

Ethics declarations

All experimental protocols were approved by the Ethics Committee of the Department of Medical Research (First Affiliated Hospital of Chongqing Medical University).

Competing Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wu, BX., Liu, CY. et al. Expression of ASIC3 in the Trigeminal Nucleus Caudalis Plays a Role in a Rat Model of Recurrent Migraine. J Mol Neurosci 66, 44–52 (2018). https://doi.org/10.1007/s12031-018-1113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-018-1113-3

Keywords

Navigation