Skip to main content
Log in

Alismol, a Sesquiterpenoid Isolated from Vladimiria souliei, Suppresses Proinflammatory Mediators in Lipopolysaccharide-Stimulated Microglia

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Microglia activation plays an important role in the pathogenesis of various neurodegenerative diseases by producing neurotoxic factors, such as proinflammatory cytokines and nitric oxide (NO); therefore, suppression of microglia activation is a potential therapeutic approach against these diseases. Previous study showed that alismol, a sesquiterpenoid isolated from the roots of Vladimiria souliei inhibits interferon-γ-induced NO production in murine macrophage RAW264.7 cells. In the present study, we found that alismol reduced NO and prostaglandin E2 (PGE2) levels and suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated primary and cultured microglia. Alismol also inhibited the mRNA and protein expression of proinflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. Further mechanistic studies revealed that alismol inhibited LPS-induced nuclear factor-κB (NF-κB) activation but not mitogen-activated protein kinase (MAPK) pathway. Finally, we demonstrated the neuroprotective effects of alismol in microglia-neuron coculture systems. Collectively, these results suggest that the inhibition of microglia activation by alismol may provide potential therapeutic strategy for various neuroinflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149:2736–2741

    CAS  PubMed  Google Scholar 

  • Chen H, Jacobs E, Schwarzschild MA et al (2005) Nonsteroidal anti-inflammatory drug use and the risk for Parkinson’s disease. Ann Neurol 58:963–967

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Lee MK, Lim SY, Sung SH, Kim YC (2009) Inhibition of inducible NO synthase, cyclooxygenase-2 and interleukin-1β by torilin is medated by mitogen-activated protein kinases in microglia BV2 cells. Br J Pharmacol 156:933–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui CA, Jin DQ, Hwang YK et al (2008) Macelignan attenuates LPS-induced inflammation and reduces LPS-induced spatial learning impairments in rats. Neurosci Lett 448:110–114

    Article  CAS  PubMed  Google Scholar 

  • Dickson DW, Lee SC, Mattiace LA, Yen SH, Brosnan C (1993) Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia 7:75–83

    Article  CAS  PubMed  Google Scholar 

  • Du Yan S, Zhu H, Fu J et al (1997) Amyloid-β peptide–receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer’s disease. Proc Natl Acad Sci U S A 94:5296–5301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang X, Yu MM, Yuen WH, Zee SY, Chang RC (2005) Immune modulatory effects of Prunella vularis L. on monocytes/macrophage. Int J Mol Med 16:1109–1116

    PubMed  Google Scholar 

  • Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81:1285–1297

    Article  CAS  PubMed  Google Scholar 

  • Gao HM, Hong JS, Zhang W, Liu B (2003a) Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease. J Neurosci 23:1228–1236

    CAS  PubMed  Google Scholar 

  • Gao HM, Liu B, Zhang W, Hong JS (2003b) Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci 24:395–401

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Karin M (2002) Missing pieces in the NF-κB puzzle. Cell 109:S81–S96

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Scarano F, Baltuch G (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 22:219–240

    Article  CAS  PubMed  Google Scholar 

  • Jang MH, Kim CJ, Kim EH, Kim MG, Leem KH, Kim J (2006) Effects of Platycodon grandiflorum on lipopolysacchride-stimulated production of prostaglandin E2, nitric oxide, and interleukin–8 in mouse microglial BV2 cells. J Med Food 9:169–174

    Article  CAS  PubMed  Google Scholar 

  • Jin DQ, Lim CS, Hwang JK, Ha I, Han JS (2005) Anti-oxidant and anti-inflammatory activities of macelignan in murine hippocampal cell line and primary culture of rat microglial cells. Biochem Biophys Res Commun 331:1264–1269

    Article  CAS  PubMed  Google Scholar 

  • Licastro F, Pedrini S, Ferri C et al (2000) Gene polymorphism affecting α-1-antichymotrypsin and interleukin-1 plasma levels increases Alzheimer’s disease risk. Ann Neurol 48:388–391

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Du L, Hong JS (2000) Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J Pharmacol Exp Ther 293:607–617

    CAS  PubMed  Google Scholar 

  • McGeer PL, Kawamata T, Walker DG, Akiyama H, Tooyama I, McGeer EG (1993) Microglia in degenerative neurological disease. Glia 7:84–92

    Article  CAS  PubMed  Google Scholar 

  • Murphy GM Jr, Yang L, Cordell B (1998) Macrophage colony-stimulating factor augments β-amyloid induced interleukin-1, interleukin-6, and nitric oxide production by microglial cells. J Biol Chem 273:20967–20971

    Article  CAS  PubMed  Google Scholar 

  • Nakajima K, Kohsaka S (1993) Functional roles of microglia in the brain. Neurosci Res 17:187–203

    Article  CAS  PubMed  Google Scholar 

  • Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18:6853–6866

    Article  CAS  PubMed  Google Scholar 

  • Stewart WF, Kawas C, Corrada M, Metter EJ (1997) Risk of Alzheimer’s disease and duration of NSAID use. Neurology 48:626–632

    Article  CAS  PubMed  Google Scholar 

  • Tha KK, Okuma Y, Miyazaki H et al (2000) Changes in expressions of proinflammatory cytokines IL-1beta, TNF-alpha and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Brain Res 885:25–31

    Article  CAS  PubMed  Google Scholar 

  • Ton TG, Heckbert SR, Longstreth WT Jr et al (2006) Nonsteroidal anti-inflammatory drugs and risk of Parkinson’s disease. Mov Disord 21:964–969

    Article  PubMed  Google Scholar 

  • Xu J, Jin D, Shi D et al (2011) Sesquiterpenes from Vladimiria souliei and their inhibitory effects on NO production. Fitoterapia 82:508–511

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Tianjin Natural Science Foundation (15JCYBJC29200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Qing Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Song, X., Guo, Y. et al. Alismol, a Sesquiterpenoid Isolated from Vladimiria souliei, Suppresses Proinflammatory Mediators in Lipopolysaccharide-Stimulated Microglia. J Mol Neurosci 62, 106–113 (2017). https://doi.org/10.1007/s12031-017-0890-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-017-0890-4

Keywords

Navigation