Skip to main content

Advertisement

Log in

Retinal and Optic Nerve Damage is Associated with Early Glial Responses in an Experimental Autoimmune Glaucoma Model

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

It is well established that the immunization with ocular antigens causes a retinal ganglion cell (RGC) decline, which is accompanied by glia alterations. In this study, the degenerative effects of the immunization with an optic nerve homogenate (ONA) and its purified compound S100 were analyzed on retinas and optic nerves. Since a participation of glia cells in cell death mechanisms is currently discussed, rats were immunized with S100 or ONA. At 14 and 28 days, immune-histological and Western blot analyses were performed to investigate the optic nerve structure (SMI-32), retinal ganglion cells (Brn-3a), apoptosis (cleaved caspase 3, FasL), and glial profile (Iba1, ED1, GFAP, vimentin). Neurofilament dissolution in S100 animals was evident at 14 days (p = 0.047) and increased at 28 days (p = 0.01). ONA optic nerves remained intact at early stages and degenerated later on (p = 0.002). In both groups, RGC loss was detected via immune-histology and Western blot at 28 days (ONA: p = 0.02; S100: p = 0.005). Additionally, more Iba1+ retinal microglia could be detected at early stages (ONA: p = 0.006; S100: p = 0.028). A slight astrocyte response was detected on Western blots only on ONA retinas (p = 0.01). Hence, the RGC and optic nerve decline was partly antigen dependent, while neuronal loss is paralleled by an early microglial response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  • Boehm N, Wolters D, Thiel U, Lossbrand U, Wiegel N, Pfeiffer N, Grus FH (2012) New insights into autoantibody profiles from immune privileged sites in the eye: a glaucoma study. Brain Behav Immun 26:96–102

    Article  CAS  PubMed  Google Scholar 

  • Caporale CM, Capasso M, Luciani M, Prencipe V, Creati B, Gandolfi P, De Angelis MV, Di Muzio A, Caporale V, Uncini A (2006) Experimental axonopathy induced by immunization with Campylobacter jejuni lipopolysaccharide from a patient with Guillain-Barre syndrome. J Neuroimmunol 174:12–20

    Article  CAS  PubMed  Google Scholar 

  • Casola C, Schiwek JE, Reinehr S, Kuehn S, Grus FH, Kramer M, Dick HB, Joachim SC. 2015. S100 alone has the same destructive effect on retinal ganglion cells as in combination with HSP 27 in an autoimmune glaucoma model. J Mol Neurosci.

  • Choi C, Benveniste EN (2004) Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses. Brain Res Brain Res Rev 44:65–81

    Article  CAS  PubMed  Google Scholar 

  • Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898

    Article  CAS  PubMed  Google Scholar 

  • Ebneter A, Casson RJ, Wood JP, Chidlow G (2010) Microglial activation in the visual pathway in experimental glaucoma: spatiotemporal characterization and correlation with axonal injury. Invest Ophthalmol Vis Sci 51:6448–6460

    Article  PubMed  Google Scholar 

  • Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81:1285–1297

    Article  CAS  PubMed  Google Scholar 

  • Graeber MB, Streit WJ, Kiefer R, Schoen SW, Kreutzberg GW (1990) New expression of myelomonocytic antigens by microglia and perivascular cells following lethal motor neuron injury. J Neuroimmunol 27:121–132

    Article  CAS  PubMed  Google Scholar 

  • Gregory MS, Hackett CG, Abernathy EF, Lee KS, Saff RR, Hohlbaum AM, Moody KS, Hobson MW, Jones A, Kolovou P and others. 2011. Opposing roles for membrane bound and soluble Fas ligand in glaucoma-associated retinal ganglion cell death. PLoS One 6:e17659.

  • Grus FH, Boehm N, Beck S, Schlich M, Lossbrandt U, Pfeiffer N (2010) Autoantibody profiles in tear fluid as a diagnostic tool in glaucoma. Invest Ophthalmol Vis Sci 51:6110

    Google Scholar 

  • Grus FH, Joachim SC, Hoffmann EM, Pfeiffer N (2004) Complex autoantibody repertoires in patients with glaucoma. Mol Vis 10:132–137

    CAS  PubMed  Google Scholar 

  • Grus FH, Joachim SC, Wuenschig D, Rieck J, Pfeiffer N (2008) Autoimmunity and glaucoma. J Glaucoma 17:79–84

    Article  PubMed  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Horstmann L, Schmid H, Heinen AP, Kurschus FC, Dick B, Joachim SC (2013) Inflammatory demyelination induces glia alterations and ganglion cell loss in the retina of anexperimental autoimmune encephalomyelitis model. J Neuroinflammation 10:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Joachim SC, Gramlich OW, Laspas P, Schmid H, Beck S, von Pein HD, Dick HB, Pfeiffer N, Grus FH (2012) Retinal ganglion cell loss is accompanied by antibody depositions and increased levels of microglia after immunization with retinal antigens. PLoS One 7:e40616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joachim SC, Mondon C, Gramlich OW, Grus FH, Dick HB (2014) Apoptotic retinal ganglion cell death in an autoimmune glaucoma model is accompanied by antibody depositions. J Mol Neurosci 52:216–224

    Article  CAS  PubMed  Google Scholar 

  • Joachim SC, Reinehr S, Kuehn S, Laspas P, Gramlich OW, Kuehn M, Tischoff I, von Pein HD, Dick HB, Grus FH (2013) Immune response against ocular tissues after immunization with optic nerve antigens in a model of autoimmune glaucoma. Mol Vis 19:1804–1814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ju KR, Kim HS, Kim JH, Lee NY, Park CK (2006) Retinal glial cell responses and Fas/FasL activation in rats with chronic ocular hypertension. Brain Res 1122:209–221

    Article  CAS  PubMed  Google Scholar 

  • Laspas P, Gramlich OW, Muller HD, Cuny CS, Gottschling PF, Pfeiffer N, Dick HB, Joachim SC, Grus FH (2011) Autoreactive antibodies and loss of retinal ganglion cells in rats induced by immunization with ocular antigens. Invest Ophthalmol Vis Sci 52:8835–8848

    Article  CAS  PubMed  Google Scholar 

  • Lawson LJ, Frost L, Risbridger J, Fearn S, Perry VH (1994) Quantification of the mononuclear phagocyte response to Wallerian degeneration of the optic nerve. J Neurocytol 23:729–744

    Article  CAS  PubMed  Google Scholar 

  • Massoll C, Mando W, Chintala SK (2013) Excitotoxicity upregulates SARM1 protein expression and promotes Wallerian-like degeneration of retinal ganglion cells and their axons. Invest Ophthalmol Vis Sci 54:2771–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGeer PL, Itagaki S, Tago H, McGeer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79:195–200

    Article  CAS  PubMed  Google Scholar 

  • Nadal-Nicolas FM, Jimenez-Lopez M, Sobrado-Calvo P, Nieto-Lopez L, Canovas-Martinez I, Salinas-Navarro M, Vidal-Sanz M, Agudo M (2009) Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Invest Ophthalmol Vis Sci 50:3860–3868

    Article  PubMed  Google Scholar 

  • Nakazawa T, Nakazawa C, Matsubara A, Noda K, Hisatomi T, She H, Michaud N, Hafezi-Moghadam A, Miller JW, Benowitz LI (2006) Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci 26:12633–12641

    Article  CAS  PubMed  Google Scholar 

  • Reichert F, Rotshenker S (1996) Deficient activation of microglia during optic nerve degeneration. J Neuroimmunol 70:153–161

    Article  CAS  PubMed  Google Scholar 

  • Reinehr S, Becker S, Kuehn S, Casola C, Noristani R, Dick B, Joachim S (2013) Activation of the complement system in an autoimmune model of glaucoma. Invest Ophthalmol Vis Sci 54:753

    Google Scholar 

  • Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  CAS  PubMed  Google Scholar 

  • Rothermundt M, Peters M, Prehn JH, Arolt V (2003) S100B in brain damage and neurodegeneration. Microsc Res Tech 60:614–632

    Article  CAS  PubMed  Google Scholar 

  • Salinas-Navarro M, Alarcon-Martinez L, Valiente-Soriano FJ, Jimenez-Lopez M, Mayor-Torroglosa S, Aviles-Trigueros M, Villegas-Perez MP, Vidal-Sanz M (2010) Ocular hypertension impairs optic nerve axonal transport leading to progressive retinal ganglion cell degeneration. Exp Eye Res 90:168–183

    Article  CAS  PubMed  Google Scholar 

  • Sasaki Y, Ohsawa K, Kanazawa H, Kohsaka S, Imai Y (2001) Iba1 is an actin-cross-linking protein in macrophages/microglia. Biochem Biophys Res Commun 286:292–297

    Article  CAS  PubMed  Google Scholar 

  • Schlamp CL, Li Y, Dietz JA, Janssen KT, Nickells RW (2006) Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric. BMC Neurosci 7:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Son JL, Soto I, Oglesby E, Lopez-Roca T, Pease ME, Quigley HA, Marsh-Armstrong N (2010) Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss. Glia 58:780–789

    PubMed  Google Scholar 

  • Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133–139

    Article  PubMed  Google Scholar 

  • Sucher NJ, Lipton SA, Dreyer EB (1997) Molecular basis of glutamate toxicity in retinal ganglion cells. Vis Res 37:3483–3493

    Article  CAS  PubMed  Google Scholar 

  • Svajger U, Obermajer N, Jeras M. 2013. IFN-gamma-rich environment programs dendritic cells toward silencing of cytotoxic immune responses. J Leukoc Biol.

  • Takeuchi H, Wang J, Kawanokuchi J, Mitsuma N, Mizuno T, Suzumura A (2006) Interferon-gamma induces microglial-activation-induced cell death: a hypothetical mechanism of relapse and remission in multiple sclerosis. Neurobiol Dis 22:33–39

    Article  CAS  PubMed  Google Scholar 

  • Tezel G (2008) TNF-alpha signaling in glaucomatous neurodegeneration. Prog Brain Res 173:409–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tezel G (2011) The immune response in glaucoma: a perspective on the roles of oxidative stress. Exp Eye Res 93:178–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal-Sanz M, Salinas-Navarro M, Nadal-Nicolas FM, Alarcon-Martinez L, Valiente-Soriano FJ, de Imperial JM, Aviles-Trigueros M, Agudo-Barriuso M, Villegas-Perez MP (2012) Understanding glaucomatous damage: anatomical and functional data from ocular hypertensive rodent retinas. Prog Retin Eye Res 31:1–27

    Article  PubMed  Google Scholar 

  • Wang J, Hamm RJ, Povlishock JT (2011) Traumatic axonal injury in the optic nerve: evidence for axonal swelling, disconnection, dieback, and reorganization. J Neurotrauma 28:1185–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Ng YK, Tay SS (2005) Factors contributing to neuronal degeneration in retinas of experimental glaucomatous rats. J Neurosci Res 82:674–689

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Tay SS, Ng YK (2000) An immunohistochemical study of neuronal and glial cell reactions in retinae of rats with experimental glaucoma. Exp Brain Res 132:476–484

    Article  CAS  PubMed  Google Scholar 

  • Wax MB, Tezel G (2009) Immunoregulation of retinal ganglion cell fate in glaucoma. Exp Eye Res 88:825–830

    Article  CAS  PubMed  Google Scholar 

  • Wax MB, Tezel G, Kawase K, Kitazawa Y (2001) Serum autoantibodies to heat shock proteins in glaucoma patients from Japan and the United States. Ophthalmology 108:296–302

    Article  CAS  PubMed  Google Scholar 

  • Wu KH, Madigan MC, Billson FA, Penfold PL (2003) Differential expression of GFAP in early v late AMD: a quantitative analysis. Br J Ophthalmol 87:1159–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Forrester JV, Liversidge J, Crane IJ (2003) Leukocyte trafficking in experimental autoimmune uveitis: breakdown of blood-retinal barrier and upregulation of cellular adhesion molecules. Invest Ophthalmol Vis Sci 44:226–234

    Article  PubMed  Google Scholar 

  • Xu H, Manivannan A, Goatman KA, Jiang HR, Liversidge J, Sharp PF, Forrester JV, Crane IJ (2004) Reduction in shear stress, activation of the endothelium, and leukocyte priming are all required for leukocyte passage across the blood–retina barrier. J Leukoc Biol 75:224–232

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (DFG, grant JO-886/1-1 and 1-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie C. Joachim.

Ethics declarations

The experiments were carried out in conformity with the ARVO statement for the use of animals in ophthalmic and vision research. The study was approved by the animal care committee of North Rhine-Westphalia (Germany; file reference AZ 87-51.04.2010.A382).

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Rozina Noristani and Sandra Kuehn contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noristani, R., Kuehn, S., Stute, G. et al. Retinal and Optic Nerve Damage is Associated with Early Glial Responses in an Experimental Autoimmune Glaucoma Model. J Mol Neurosci 58, 470–482 (2016). https://doi.org/10.1007/s12031-015-0707-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0707-2

Keywords

Navigation