Skip to main content

Advertisement

Log in

Molecular Mechanisms of the Action of Vitamin A in Th17/Treg Axis in Multiple Sclerosis

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is an autoinflammatory disease of the central nervous system (CNS). The immunopathogenesis of this disease involves an impaired balance of T helper (Th) 17 cells and regulatory T (Tregs) cells. MS is an autoinflammatory disease characterized by the degeneration of the CNS. For many years, MS has been considered to be an autoreactive Th1 and Th17 cell-dominated disease. The activity and number of Th17 cells are increased in MS; however, the function and number of Treg cells are reduced. Therefore, in MS, the balance between Th17 cells and Treg cells is impaired. Th17 cells produce pro-inflammatory cytokines, which play a role in experimental autoimmune encephalomyelitis (EAE) and MS. However, Treg cell-mediated production of cytokines maintains immune homeostasis and can ameliorate the progression of MS. These observations, therefore, confirm the pathogenic and protective role of Th17 and Treg cells, respectively, and highlight the importance of maintaining the balance of both of these cell types. Evidence suggests that vitamin A and its active metabolites (all-trans-retinoic acid and 9-cis-retinoic acid) modulate the imbalance of Th17 and Treg cells through multiple molecular pathways and can be considered as a promising target in the prevention and treatment of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ (2007) All-trans retinoic acid mediates enhanced Treg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 204(8):1765–1774

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bettelli E, Korn T, Kuchroo VK (2007) Th17: the third member of the effector T cell trilogy. Curr Opin Immunol 19:652–657

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beyeen AD, Adzemovic MZ, Ockinger J et al (2010) IL-22RA2 associates with multiple sclerosis and macrophage effector mechanisms in experimental neuroinflammation. J Immunol 185(11):6883–6890

    CAS  PubMed  Google Scholar 

  • Boks MA, Kager-Groenland JR, Haasjes MS, Zwaginga JJ, van Ham SM, ten Brinke A (2012) IL-10-generated tolerogenic dendritic cells are optimal for functional regulatory T cell induction—a comparative study of human clinical-applicable DC. Clin Immunol 142(3):332–342

    CAS  PubMed  Google Scholar 

  • Boppana S, Huang H, Ito K, Dhib-Jalbut S (2011) Immunologic aspects of multiple sclerosis. Mt Sinai J Med 78(2):207–220

    PubMed  Google Scholar 

  • Buc M (2013) Role of regulatory T cells in pathogenesis and biological therapy of multiple sclerosis. Mediat Inflamm 2013:963748

    Google Scholar 

  • Cassani B, Villablanca EJ, De Calisto J, Wang S, Mora JR (2012) Vitamin A and immune regulation: role of retinoic acid in gut-associated dendritic cell education, immune protection and tolerance. Mol Asp Med 33(1):63–76

    CAS  Google Scholar 

  • Chabaud M, Fossiez F, Taupin JL, Miossec P (1998) Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol 161:409–414

    CAS  PubMed  Google Scholar 

  • Chang J, Thangamani S, Kim MH, Ulrich B, Morris SM, Kim CH (2013) Retinoic acid promotes the development of Arg1-expressing dendritic cells for the regulation of T-cell differentiation. Eur J Immunol 43(4):967–978

    CAS  PubMed  Google Scholar 

  • Chen W, Jin W, Hardegen N et al (2003) Conversion of peripheral CD4 + CD25− naive T cells to CD4 + CD25+ regulatory T cells by TGF-β induction of transcription factor FoxP3. J Exp Med 198(12):1875–1886

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Z, Laurence A, Kanno Y et al (2006) Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci U S A 103:8137–8142

    PubMed Central  CAS  PubMed  Google Scholar 

  • Collison LW, Workman CJ, Kuo TT et al (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450(7169):566–569

    CAS  PubMed  Google Scholar 

  • Comabella M, Khoury SJ (2012) Immunopathogenesis of multiple sclerosis. Clin Immunol 142(1):2–8

    CAS  PubMed  Google Scholar 

  • Coombes JL, Siddiqui KR, Arancibia-Cárcamo CV et al (2007) A functionally specialized population of mucosal CD103+ DCs induces FoxP3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J Exp Med 204(8):1757–1764

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coquet JM, Middendorp S, van der Horst G et al (2013) The CD27 and CD70 costimulatory pathway inhibits effector function of T helper 17 cells and attenuates associated autoimmunity. Immunity 38:53–65

    CAS  PubMed  Google Scholar 

  • Correale J, Villa A (2010) Role of CD8+ CD25+ Foxp3+ regulatory T cells in multiple sclerosis. Ann Neurol 67:625–638

    CAS  PubMed  Google Scholar 

  • Croxford JL, Feldmann M, Chernajovsky Y, Baker D (2001) Different therapeutic outcomes in experimental allergic encephalomyelitis dependent upon the mode of delivery of IL-10: a comparison of the effects of protein, adenoviral or retroviral IL-10 delivery into the central nervous system. J Immunol 166(6):4124–4130

    CAS  PubMed  Google Scholar 

  • Cua DJ, Hutchins B, LaFace DM, Stohlman SA, Coffman RL (2001) Central nervous system expression of IL-10 inhibits autoimmune encephalomyelitis. J Immunol 166(1):602–608

    CAS  PubMed  Google Scholar 

  • Den Hartog G, van Altena C, Savel koul HF, van Neerven RJ (2013) The mucosal factors retinoic acid and TGF-beta1 induce phenotypically and functionally distinct dendritic cell types. Int Arch Allergy Immunol 162(3):225–236

    Google Scholar 

  • Dong S, Tweardy DJ (2002) Interactions of STAT5b-RARα, a novel acute promyelocytic leukemia fusion protein, with retinoic acid receptor and STAT3 signaling pathways. Blood 99(8):2637–2646

    CAS  PubMed  Google Scholar 

  • Durelli L, Conti L, Clerico M et al (2009) T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-beta. Ann Neurol 65(5):499–509

    CAS  PubMed  Google Scholar 

  • Duriancik DM, Lackey DE, Hoag KA (2010) Vitamin A as a regulator of antigen presenting cells. J Nutr 140:1395–1399

    CAS  PubMed  Google Scholar 

  • El-Behi M, Rostami A, Ciric B (2010) Current views on the roles of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol 5:189–197

    PubMed Central  PubMed  Google Scholar 

  • Elias KM, Laurence A, Davidson TS et al (2008) Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood 111(3):1013–1020

    PubMed Central  CAS  PubMed  Google Scholar 

  • Elyaman W, Bradshaw EM, Uyttenhove C et al (2009) IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc Natl Acad Sci U S A 106:12885–12890

    PubMed Central  CAS  PubMed  Google Scholar 

  • Erta M, Quintana A, Hidalgo J (2012) Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 8:1254–1266

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ertesvag A, Engedal N, Naderi S, Blomhoff HK (2002) Retinoic acid stimulates the cell cycle machinery in normal T cells: involvement of retinoic acid receptor-mediated IL-2 secretion. J Immunol 169(10):5555–5563

    CAS  PubMed  Google Scholar 

  • Ferrari CC, Depino AM, Prada F et al (2004) Reversible demyelination, blood–brain barrier breakdown, and pronounced neutrophil recruitment induced by chronic IL-1 expression in the brain. Am J Pathol 165:1827–1837

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in FoxP3-expressing regulatory T cells. Nat Immunol 6(11):1142–1151

    CAS  PubMed  Google Scholar 

  • Gärtner D, Hoff H, Gimsa U, Burmester GR, Brunner-Weinzierl MC (2006) CD25 regulatory T cells determine secondary but not primary remission in EAE: impact on long-term disease progression. J Neuroimmunol 172(12):73–84

    PubMed  Google Scholar 

  • Hall JA, Grainger JR, Spencer SP, Belkaid Y (2011) The role of retinoic acid in tolerance and immunity. Immunity 35(1):13–22

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hamza T, Barnett JB, Li B (2010) Interleukin 12 a key immunoregulatory cytokine in infection applications. Int J Mol Sci 11(3):789–806

    PubMed Central  CAS  PubMed  Google Scholar 

  • Han L, Yang J, Wang X, Li D, Lv L, Li B (2015) Th17 cells in autoimmune diseases. Front Med 9:10–19

    PubMed  Google Scholar 

  • Hedegaard CJ, Krakauer M, Bendtzen K, Lund H, Sellebjerg F, Nielsen CH (2008) T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic protein and disease activity in multiple sclerosis. Immunology 125(2):161–169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hofstetter H, Gold R, Hartung HP (2009) Th17 cells in MS and experimental autoimmune encephalomyelitis. Int MS J 16:12–18

    PubMed  Google Scholar 

  • Huan J, Culbertson N, Spencer L et al (2005) Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res 81:45–52

    CAS  PubMed  Google Scholar 

  • Ito S, Ansari P, Sakatsume M et al (1999) Interleukin-10 inhibits expression of both interferon alpha- and interferon gamma-induced genes by suppressing tyrosine phosphorylation of STAT1. Blood 93(5):1456–1463

    CAS  PubMed  Google Scholar 

  • Ivanov II, McKenzie BS, Zhou L et al (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133

    CAS  PubMed  Google Scholar 

  • Ivanov II, Zhou L, Littman DR (2007) Transcriptional regulation of Th17 cell differentiation. Semin Immunol

  • Jadidi-Niaragh F, Mirshafiey A (2011) Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol 74(1):1–13

    CAS  PubMed  Google Scholar 

  • Jafarirad S, Siassi F, Harirchian MH et al (2012) The effect of vitamin A supplementation on stimulated T-cell proliferation with myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. J Neurosci Rural Pract 3(3):294–298

    PubMed Central  PubMed  Google Scholar 

  • Jamshidian A, Shaygannejad V, Pourazar A, Zarkesh-Esfahani SH, Gharagozloo M (2013) Biased Treg/Th17 balance away from regulatory toward inflammatory phenotype in relapsed multiple scleroses and its correlation with severity of symptoms. J Neuroimmunol 262:106–112

    CAS  PubMed  Google Scholar 

  • Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564

    CAS  PubMed  Google Scholar 

  • Jovanovic DV, Di Battista JA, Martel-Pelletier J et al (1998) IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol 160:3513–3521

    CAS  PubMed  Google Scholar 

  • Kang SG, Lim HW, Andrisani OM, Broxmeyer HE, Kim CH (2007) Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J Immunol 179(6):3724–3733

    CAS  PubMed  Google Scholar 

  • Kim CH (2008) Regulation of FoxP3 regulatory T cells and Th17 cells by retinoids. Clin Dev Immunol 2008:416910

    PubMed Central  PubMed  Google Scholar 

  • Kimura A, Kishimoto T (2010) IL-6: regulator of Treg/Th17 balance. Eur J Immunol 40:1830–1835

    CAS  PubMed  Google Scholar 

  • Klemann C, Raveney BJ, Klemann AK et al (2009) Synthetic retinoid AM80 inhibits Th17 cells and ameliorates experimental autoimmune encephalomyelitis. Am J Pathol 174(6):2234–2245

    PubMed Central  CAS  PubMed  Google Scholar 

  • Knoechel B, Lohr J, Kahn E, Bluestone JA, Abbas AK (2005) Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen. J Exp Med 202(10):1375–1386

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kohm AP, Carpentier PA, Anger HA, Miller SD (2002) Cutting edge: CD4+ CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 169(9):4712–4716

    CAS  PubMed  Google Scholar 

  • Komiyama Y, Nakae S, Matsuki T et al (2006) IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177:566–573

    CAS  PubMed  Google Scholar 

  • Kryczek I, Wei S, Vatan L et al (2007a) Cutting edge: opposite effects of IL-1 and IL-2 on the regulation of IL-17+ T cell pool IL-1 subverts IL-2-mediated suppression. J Immunol 179:1423–1426

    CAS  PubMed  Google Scholar 

  • Kryczek I, Wei S, Zou L et al (2007b) Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol 178:6730–6733

    CAS  PubMed  Google Scholar 

  • Langrish CL, Chen Y, Blumenschein WM et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201(2):233–240

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laurence A, Tato CM, Davidson TS et al (2007) Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26:371–381

    CAS  PubMed  Google Scholar 

  • Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99

    CAS  PubMed  Google Scholar 

  • Lin JX, Leonard WJ (2000) The role of Stat5a and Stat5b in signaling by IL-2 family cytokines. Oncogene 19(21):2566–2576

    CAS  PubMed  Google Scholar 

  • Lin JT, Martin SL, Xia L, Gorham JD (2005) TGFbeta 1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet. J Immunol 174(10):5950–5958

    CAS  PubMed  Google Scholar 

  • Lock C, Hermans G, Pedotti R et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8(5):500–508

    CAS  PubMed  Google Scholar 

  • Lovett-Racke AE, Yang Y, Racke MK (2011) Th1 versus Th17: are T cell cytokines relevant in multiple sclerosis? Biochim Biophys Acta 1812(2):246–251

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lu L, Zhou X, Wang J, Zheng SG, Horwitz DA (2010) Characterization of protective human CD4CD25 FOXP3 regulatory T cells generated with IL-2, TGF-β and retinoic acid. PLoS One 5(12), e15150

    PubMed Central  PubMed  Google Scholar 

  • Maddur MS, Miossec P, Kaveri SV, Bayry J (2012) Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol 181(1):8–18

    CAS  PubMed  Google Scholar 

  • Massacesi L, Abbamondi AL, Giorgi C, Sarlo F, Lolli F, Amaducci L (1987) Suppression of experimental allergic encephalomyelitis by retinoic acid. J Neurol Sci 80:55–64

    CAS  PubMed  Google Scholar 

  • Matsuda M, Salazar F, Petersson M et al (1994) Interleukin 10 pretreatment protects target cells from tumor and allo-specific cytotoxic T cells and downregulates HLA class I expression. J Exp Med 180(6):2371–2376

    CAS  PubMed  Google Scholar 

  • Matusevicius D, Kivisakk P, He B et al (1999) Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 5:101–104

    CAS  PubMed  Google Scholar 

  • McGeachy MJ, Bak-Jensen KS, Chen Y et al (2007) TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 8(12):1390–1397

    CAS  PubMed  Google Scholar 

  • McGeachy MJ, Chen Y, Tato CM et al (2009) The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 10:314–324

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mohammadzadeh Honarvar N, Harirchian MH, Koohdani F et al (2013) The effect of vitamin A supplementation on retinoic acid-related orphan receptor γt (RORγt) and interleukin-17 (IL-17) gene expression in Avonex-treated multiple sclerotic patients. J Mol Neurosci 51(3):749–753

    PubMed  Google Scholar 

  • Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    CAS  PubMed  Google Scholar 

  • Mucida D, Park Y, Kim G (2007) Reciprocal Th17 and regulatory T cell differentiation mediated by retinoic acid. Science 317(5835):256–260

    CAS  PubMed  Google Scholar 

  • Mucida D, Park Y, Cheroutre H (2009a) From the diet to the nucleus: vitamin A and TGF-b join efforts at the mucosal interface of the intestine. Semin Immunol 21:14–21

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mucida D, Pino-Lagos K, Kim G et al (2009b) Retinoic acid can directly promote TGF-beta-mediated Foxp3 (+) Treg cell conversion of naive T cells. Immunity 30(4):471–472

    PubMed Central  CAS  PubMed  Google Scholar 

  • Niedbala W, Wei XQ, Cai B et al (2007) IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells. Eur J Immunol 37(11):3021–3029

    CAS  PubMed  Google Scholar 

  • Nowak EC, Weaver CT, Turner H et al (2009) IL-9 as a mediator of Th17-driven inflammatory disease. J Exp Med 206:1653–1660

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nurieva R, Yang XO, Martinez G et al (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448(7152):480–483

    CAS  PubMed  Google Scholar 

  • Okuda Y, Sakoda S, Bernard CC et al (1998) IL-6-deficient mice are resistant to the induction of experimental autoimmune encephalomyelitis provoked by myelin oligodendrocyte glycoprotein. Int Immunol 10:703–708

    CAS  PubMed  Google Scholar 

  • Ozerlat I (2011) Multiple sclerosis: ROR blockers inhibit TH17 cells. Nat Rev Neurol 7:303

    PubMed  Google Scholar 

  • Penkowa M, Hidalgo J (2001) Metallothionein treatment reduces proinflammatory cytokines IL-6 and TNF-alpha and apoptotic cell death during experimental autoimmune encephalomyelitis (EAE). Exp Neurol 170:1–14

    CAS  PubMed  Google Scholar 

  • Pino-Lagos K, Benson MJ, Noelle RJ (2008) Retinoic acid in the immune system. Ann N Y Acad Sci 1143:170–187

    CAS  PubMed  Google Scholar 

  • Pittock SJ, Lucchinetti CF (2007) The pathology of MS: new insights and potential clinical applications. Neurologist 13:45–56

    PubMed  Google Scholar 

  • Racke MK, Burnett D, Pak SH et al (1995) Retinoid treatment of experimental allergic encephalomyelitis. IL-4 production correlates with improved disease course. J Immunol 154:450–458

    CAS  PubMed  Google Scholar 

  • Rodgers JM, Miller SD (2012) Cytokine control of inflammation and repair in the pathology of multiple sclerosis. Yale J Biol Med 85(4):447–468

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ross AC (2012) Vitamin A and retinoic acid in T cell-related immunity. Am J Clin Nutr 96(5):1166–1172

    Google Scholar 

  • Runia TF, Hop WCJ, Rijke B, Hintzen RQ (2014) Vitamin A is not associated with exacerbations in multiple sclerosis. Mult Scler Relat Disord 3:34–39

    CAS  PubMed  Google Scholar 

  • Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500

    CAS  PubMed  Google Scholar 

  • Samarut E, Rochette-Egly C (2011) Nuclear retinoic acid receptors: conductors of the retinoic acid symphony during development. Mol Cell Endocrinol 348(2):348–360

    PubMed  Google Scholar 

  • Samoilova EB, Horton JL, Hilliard B, Liu TS, Chen Y (1998) IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells. J Immunol 161:6480–6486

    CAS  PubMed  Google Scholar 

  • Schambach F, Schupp M, Lazar MA, Reiner SL (2007) Activation of retinoic acid receptor-α favours regulatory T cell induction at the expense of IL-17-secreting T helper cell differentiation. Eur J Immunol 37(9):2396–2399

    CAS  PubMed  Google Scholar 

  • Setoguchi R, Hori S, Takahashi T, Sakaguchi S (2005) Homeostatic maintenance of natural FoxP3+ CD25+ CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 201(5):723–735

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sommer A, Vyas KS (2012) A global clinical view on vitamin A and carotenoids. Am J Clin Nutr 96:1204S–1206S

    CAS  PubMed  Google Scholar 

  • Sonobe Y, Jin S, Wang J et al (2007) Chronological changes of CD4(+) and CD8(+) T cell subsets in the experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Tohoku J Exp Med 213:329–339

    CAS  PubMed  Google Scholar 

  • Steinman L (2014) Immunology of relapse and remission in multiple sclerosis. Annu Rev Immunol 32:257–281

    CAS  PubMed  Google Scholar 

  • Sun CM, Hall JA, Blank RB et al (2007) Small intestine lamina propria dendritic cells promote de novo generation of FoxP3 Treg cells via retinoic acid. J Exp Med 204(8):1775–1785

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC (2006) A crucial role for interleukin (IL)- 1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203(7):1685–1691

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH (2009) Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31(2):331–341

    CAS  PubMed  Google Scholar 

  • Takahashi H, Kanno T, Nakayamada S et al (2012) TGF-b and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat Immunol 13:587–595

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ten Dijke P, Hill CS (2004) New insights into TGFbeta-Smad signalling. Trends Biochem Sci 29(5):265–273

    PubMed  Google Scholar 

  • Tzartos JS, Friese MA, Craner MJ et al (2008) Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 172:146–155

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vaknin-Dembinsky A, Balashov K, Weiner HL (2006) IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol 176:7768–7774

    CAS  PubMed  Google Scholar 

  • Veldhoen M, Stockinger B (2006) TGFbeta1, a jack of all trades: the link with pro-inflammatory IL-17-producing T cells. Trends Immunol 27(8):358–361

    CAS  PubMed  Google Scholar 

  • Venken K, Hellings N, Hensen K et al (2006) Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4+ CD25+ regulatory T-cell function and FOXP3 expression. J Neurosci Res 83(8):1432–1446

    CAS  PubMed  Google Scholar 

  • Vojdani A, Lambert J (2011) The role of Th17 in neuroimmune disorders: target for CAM therapy. Evid Based Complement Alternat Med 2011:927294

    PubMed Central  PubMed  Google Scholar 

  • von Boehmer H (2007) Oral tolerance: is it all retinoic acid? J Exp Med 204:1737

    Google Scholar 

  • Wang X, Allen C, Ballow M (2007) Retinoic acid enhances the production of IL-10 while reducing the synthesis of IL-12 and TNF-α from LPS-stimulated monocytes/macrophages. J Clin Immunol 27(2):193–200

    PubMed  Google Scholar 

  • Weaver CT, Hatton RD (2009) Interplay between the Th17 and Treg cell lineages: a (co)evolutionary perspective. Nat Rev Immunol 9:883–889

    CAS  PubMed  Google Scholar 

  • Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24:677–688

    CAS  PubMed  Google Scholar 

  • Whitehead GS, Wilson RH, Nakano K, Burch LH, Nakano H, Cook DN (2012) IL-35 production by inducible costimulator (ICOS)-positive regulatory T cells reverses established IL-17-dependent allergic airways disease. J Allergy Clin Immunol 129(1):207–215

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson NJ, Boniface K, Chan JR et al (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8:950–957

    CAS  PubMed  Google Scholar 

  • Wolf G (2006) Is 9-cis-retinoic acid the endogenous ligand for the retinoic acid-X receptor? Nutr Rev 64:532–538

    PubMed  Google Scholar 

  • Wrana JL (2002) Phosphoserine-dependent regulation of protein-protein interactions in the Smad pathway. Structure 10(1):5–7

    CAS  PubMed  Google Scholar 

  • Xiao S, Jin H, Korn T et al (2008) Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol 181(4):2277–2284

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang XO, Panopoulos AD, Nurieva R et al (2007) STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 282:9358–9363

    CAS  PubMed  Google Scholar 

  • Yao Z, Kanno Y, Kerenyi M et al (2007) Nonredundant roles for Stat5a/b in directly regulating FoxP3. Blood 109(10):4368–4375

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yurchenko E, Shio MT, Huang TC et al (2012) Inflammation driven reprogramming of CD4+ Foxp3+ regulatory T cells into pathogenic Th1/Th17 effectors is abrogated by mTOR inhibition in vivo. PLoS One 7(4), e35572

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang X, Reddy J, Ochi H, Frenkel D, Kuchroo VK, Weiner HL (2006) Recovery from experimental allergic encephalomyelitis is TGF-beta dependent and associated with increases in CD4+ LAP+ and CD4+ CD25+ T cells. Int Immunol 18(4):495–503

    CAS  PubMed  Google Scholar 

  • Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA (2004) Natural and induced CD4+ CD25+ cells educate CD4+ CD25− cells to develop suppressive activity: the role of IL-2, TGF-β, and IL-10. J Immunol 172(9):5213–5221

    CAS  PubMed  Google Scholar 

  • Ziegler SF, Buckner JH (2009) FOXP3 and the regulation of Treg/Th17 differentiation. Microbes Infect 11:594–598

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Saboor-Yaraghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolahi, M., Yavari, P., Honarvar, N.M. et al. Molecular Mechanisms of the Action of Vitamin A in Th17/Treg Axis in Multiple Sclerosis. J Mol Neurosci 57, 605–613 (2015). https://doi.org/10.1007/s12031-015-0643-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0643-1

Keywords

Navigation