Skip to main content
Log in

Sulfiredoxin-1 Attenuates Oxidative Stress via Nrf2/ARE Pathway and 2-Cys Prdxs After Oxygen-Glucose Deprivation in Astrocytes

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Sulfiredoxin-1 (Srxn1), an endogenous antioxidant protein, is involved in keeping the balance of the cell’s oxidation/reduction and can resist oxidative stress. However, the exact antioxidant effects of Srxn1 remain fully unclear. The study aims to examine the effects of Srxn1 on oxidative stress and explore the potential mechanisms in astrocytes with 6 h/oxygen-glucose deprivation (OGD), 24 h/respiration. In the study, silencing Srxn1 was performed before exposure to 6 h/OGD, 24 h/respiration in primary astrocytes. Decreased cell viability and increased cellular damage measured by CellTiter 96H AQueous Non-Radioactive Cell Proliferation Assay (MTS) and lactate dehydrogenase (LDH) were observed in Srxn1 silencing astrocytes. In addition, Srxn1 silencing resulted in a decrease in both intracellular superoxide dismutase (SOD) and glutathione (GSH). NF-E2-related factor 2 (Nrf2), a transcription factor known to influence susceptibility to oxidative stress, upregulated Srxn1 expression during oxidative stress caused by OGD in the astrocytes. Electromobility shift assay (EMSA) demonstrated a decreased binding of Nrf2 to oligomers containing Srxn1 ter-specific antioxidant response element (ARE)-binding site in Nrf2 silencing astrocytes. We also found that a reduction of peroxiredoxin (Prdx)-SO3 was closely dependent on Srxn1. In addition, 2-Cys Prdxs protein levels were increased in the astrocytes exposed to OGD, as evaluated by immunoblot analysis. All taken together, the study suggested that silencing Srxn1 would result into increasing sensitivity to OGD-induced oxidative stress injury in astrocytes. Furthermore, Nrf2/ARE pathway was involved into Srxn1, playing its antioxidant protection against oxidative stress, all of which would provide a novel therapeutic theory for treating acute ischemic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alfieri A, Srivastava S, Siow RC, Modo M, Fraser PA, Mann GE (2011) Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke. J Physiol 589:4125–4136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bae SH, Sung SH, Lee HE, Kang HT, Lee SK, Oh SY, Woo HA, Kil IS, Rhee SG (2012) Peroxiredoxin III and sulfiredoxin together protect mice from pyrazole-induced oxidative liver injury. Antioxid Redox Signal 17:1351–1361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baek JY, Han SH, Sung SH, Lee HE, Y-m K, Noh YH, Bae SH, Rhee SG, Chang T-S (2012) Sulfiredoxin protein is critical for redox balance and survival of cells exposed to low steady-state levels of H2O2. J Biol Chem 287:81–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barreto G, White RE, Ouyang Y, Xu L, Giffard RG (2011) Astrocytes: targets for neuroprotection in stroke. Cent Nerv Syst Agents Med Chem 11:164–173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine–sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–984

    Article  CAS  PubMed  Google Scholar 

  • Blackwood EM, Kadonaga JT (1998) Going the distance: a current view of enhancer action. Science 281:60–63

    Article  CAS  PubMed  Google Scholar 

  • Botia B, Seyer D, Ravni A, Benard M, Falluel-Morel A, Cosette P, Jouenne T, Fournier A, Vaudry H, Gonzalez BJ, Vaudry D (2008) Peroxiredoxin 2 is involved in the neuroprotective effects of PACAP in cultured cerebellar granule neurons. J Mol Neurosci 36:61–72

    Article  CAS  PubMed  Google Scholar 

  • Bruno V, Goldberg M, Dugan L, Giffard R, Choi D (1994) Neuroprotective effect of hypothermia in cortical cultures exposed to oxygen‐glucose deprivation or excitatory amino acids. J Neurochem 63:1398–1406

    Article  CAS  PubMed  Google Scholar 

  • Calkins MJ, Jakel RJ, Johnson DA, Chan K, Kan YW, Johnson JA (2005) Protection from mitochondrial complex II inhibition in vitro and in vivo by Nrf2-mediated transcription. Proc Natl Acad Sci U S A 102:244–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang T-S, Jeong W, Woo HA, Lee SM, Park S, Rhee SG (2004) Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J Biol Chem 279:50994–51001

    Article  CAS  PubMed  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  CAS  PubMed  Google Scholar 

  • Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA (2004) The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 24:8477–8486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Danbolt NC (1994) The high affinity uptake system for excitatory amino acids in the brain. Prog Neurobiol 44:377–396

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Nakamura T, Cho D-H, Gu Z, Lipton SA (2007) S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson’s disease. Proc Natl Acad Sci 104:18742–18747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Favreau L, Pickett C (1991) Transcriptional regulation of the rat NAD (P) H: quinone reductase gene. Identification of regulatory elements controlling basal level expression and inducible expression by planar aromatic compounds and phenolic antioxidants. J Biol Chem 266:4556–4561

    CAS  PubMed  Google Scholar 

  • Friling RS, Bergelson S, Daniel V (1992) Two adjacent AP-1-like binding sites form the electrophile-responsive element of the murine glutathione S-transferase Ya subunit gene. Proc Natl Acad Sci 89:668–672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldberg MP, Choi DW (1993) Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 13:3510–3524

    CAS  PubMed  Google Scholar 

  • Halliwell B (1992). Reactive oxygen species and the central nervous system. Free Radicals in the Brain, Springer: 21–40.

  • Hattori F and Oikawa S (2007). Peroxiredoxins in the central nervous system. Peroxiredoxin Systems, Springer: 357–374.

  • Heneka MT, Rodriguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63:189–211

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Castets F, Guevara JL, Van Eldik LJ (1996) S100 beta stimulates inducible nitric oxide synthase activity and mRNA levels in rat cortical astrocytes. J Biol Chem 271:2543–2547

    Article  CAS  PubMed  Google Scholar 

  • Inamdar NM, Ahn YI, Alam J (1996) The heme-responsive element of the mouse heme oxygenase-1 gene is an extended AP-1 binding site that resembles the recognition sequences for MAF and NF-E2 transcription factors. Biochem Biophys Res Commun 221:570–576

    Article  CAS  PubMed  Google Scholar 

  • Jakel RJ, Townsend JA, Kraft AD, Johnson JA (2007) Nrf2-mediated protection against 6-hydroxydopamine. Brain Res 1144:192–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jing X, Ren D, Wei X, Shi H, Zhang X, Perez RG, Lou H and Lou H (2013) Eriodictyol-7-O- glucoside activates Nrf2 and protects against cerebral ischemic injury. Toxicol Appl Pharmacol

  • Johnson DA, Andrews GK, Xu W, Johnson JA (2002) Activation of the antioxidant response element in primary cortical neuronal cultures derived from transgenic reporter mice. J Neurochem 81:1233–1241

    Article  CAS  PubMed  Google Scholar 

  • Jowsey IR, Jiang Q, Itoh K, Yamamoto M, Hayes JD (2003) Expression of the aflatoxin B1-8, 9-epoxide-metabolizing murine glutathione S-transferase A3 subunit is regulated by the Nrf2 transcription factor through an antioxidant response element. Mol Pharmacol 64:1018–1028

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-J, Ahn J-Y, Liang P, Ip C, Zhang Y, Park Y-M (2007) Human prx1 gene is a target of Nrf2 and is up-regulated by hypoxia/reoxygenation: implication to tumor biology. Cancer Res 67:546–554

    Article  CAS  PubMed  Google Scholar 

  • Knoops B, Goemaere J, Van der Eecken V, Declercq J-P (2011) Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid Redox Signal 15:817–829

    Article  CAS  PubMed  Google Scholar 

  • Kraft AD, Johnson DA, Johnson JA (2004) Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci 24:1101–1112

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Calkins MJ, Chan K, Kan YW, Johnson JA (2003) Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem 278:12029–12038

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Yu S, Wu J, Zou Y, Zhao Y (2013) Sulfiredoxin-1 protects PC12 cells against oxidative stress induced by hydrogen peroxide. J Neurosci Res 91:861–870

    Article  CAS  PubMed  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mulcahy RT, Wartman MA, Bailey HH, Gipp JJ (1997) Constitutive and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. J Biol Chem 272:7445–7454

    Article  CAS  PubMed  Google Scholar 

  • Nguyen T, Sherratt PJ, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–260

    Article  CAS  PubMed  Google Scholar 

  • Nioi P, McMahon M, Itoh K, Yamamoto M, Hayes J (2003) Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD (P) H: quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence. Biochem J 374:337–348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olanow C (1993) A radical hypothesis for neurodegeneration. Trends Neurosci 16:439–444

    Article  CAS  PubMed  Google Scholar 

  • Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial cells in (patho) physiology. J Neurochem 121:4–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poole LB, Nelson KJ (2008) Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol 12:18–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rhee SG, Woo HA (2011) Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H2O2, and protein chaperones. Antioxid Redox Signal 15:781–794

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA (2005) Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 17:183–189

    Article  CAS  PubMed  Google Scholar 

  • Rhee S, Jeong W, Chang T, Woo H (2007) Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance. Kidney Int 72:S3–S8

    Article  Google Scholar 

  • Rushmore TH, King RG, Paulson KE, Pickett CB (1990) Regulation of glutathione S-transferase Ya subunit gene expression: identification of a unique xenobiotic-responsive element controlling inducible expression by planar aromatic compounds. Proc Natl Acad Sci 87:3826–3830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23:3394–3406

    CAS  PubMed  Google Scholar 

  • Singh A, Rangasamy T, Thimmulappa RK, Lee H, Osburn WO, Brigelius-Flohé R, Kensler TW, Yamamoto M, Biswal S (2006) Glutathione peroxidase 2, the major cigarette smoke-inducible isoform of GPX in lungs, is regulated by Nrf2. Am J Respir Cell Mol Biol 35:639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith-Pearson PS, Kooshki M, Spitz DR, Poole LB, Zhao W, Robbins ME (2008) Decreasing peroxiredoxin II expression decreases glutathione, alters cell cycle distribution, and sensitizes glioma cells to ionizing radiation and H2O2. Free Radic Biol Med 45:1178–1189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Son TG, Camandola S, Arumugam TV, Cutler RG, Telljohann RS, Mughal MR, Moore TA, Luo W, Yu QS, Johnson DA, Johnson JA, Greig NH, Mattson MP (2010) Plumbagin, a novel Nrf2/ARE activator, protects against cerebral ischemia. J Neurochem 112:1316–1326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soriano FX, Léveillé F, Papadia S, Higgins LG, Varley J, Baxter P, Hayes JD, Hardingham GE (2008) Induction of sulfiredoxin expression and reduction of peroxiredoxin hyperoxidation by the neuroprotective Nrf2 activator 3H‐1, 2‐dithiole‐3‐thione. J Neurochem 107:533–543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swanson RA, Ying W, Kauppinen TM (2004) Astrocyte influences on ischemic neuronal death. Curr Mol Med 4:193–205

    Article  CAS  PubMed  Google Scholar 

  • Tavender T, Sheppard A, Bulleid N (2008) Peroxiredoxin IV is an endoplasmic reticulum-localized enzyme forming oligomeric complexes in human cells. Biochem J 411:191–199

    Article  CAS  PubMed  Google Scholar 

  • Tsuji Y, Ayaki H, Whitman SP, Morrow CS, Torti SV, Torti FM (2000) Coordinate transcriptional and translational regulation of ferritin in response to oxidative stress. Mol Cell Biol 20:5818–5827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wasserman WW, Fahl WE (1997) Comprehensive analysis of proteins which interact with the antioxidant responsive element: correlation of ARE-BP-1 with the chemoprotective induction response. Arch Biochem Biophys 344:387–396

    Article  CAS  PubMed  Google Scholar 

  • Winyard PG, Moody CJ, Jacob C (2005) Oxidative activation of antioxidant defence. Trends Biochem Sci 30:453–461

    Article  CAS  PubMed  Google Scholar 

  • Woo HA, Jeong W, Chang TS, Park KJ, Park SJ, Yang JS, Rhee SG (2005) Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J Biol Chem 280:3125–3128

    Article  CAS  PubMed  Google Scholar 

  • Wood ZA, Schröder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40

    Article  CAS  PubMed  Google Scholar 

  • Yu AC, Liu RY, Zhang Y, Sun HR, Qin LY, Lau LT, Wu BY, Hui HK, Heung MY, Han JS (2007) Glial cell line-derived neurotrophic factor protects astrocytes from staurosporine- and ischemia-induced apoptosis. J Neurosci Res 85:3457–3464

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman BJ, Grisham MB, Granger DN (1990) Role of oxidants in ischemia/reperfusion-induced granulocyte infiltration. Am J Physiol Gastrointest Liver Physiol 258:G185–G190

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81301125, 81271460, and 81171090).

Conflict Interest

The authors have declared that no competing interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Duan, S., Zhou, Y. et al. Sulfiredoxin-1 Attenuates Oxidative Stress via Nrf2/ARE Pathway and 2-Cys Prdxs After Oxygen-Glucose Deprivation in Astrocytes. J Mol Neurosci 55, 941–950 (2015). https://doi.org/10.1007/s12031-014-0449-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0449-6

Keywords

Navigation