Skip to main content

Advertisement

Log in

A Hydrophobic Area of the GABA ρ1 Receptor Containing Phenylalanine 124 Influences Both Receptor Activation and Deactivation

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Experimental evidence suggests that GABA ρ1 receptors are potential therapeutic targets for the treatment of a range of neurological conditions, including anxiety and sleep disorders. Homology modelling of the GABA ρ1 extracellular N-terminal domain has revealed a novel hydrophobic area that extends beyond, but not including the GABA-binding site. Phenylalanine 124 (F124) is predicted to be involved in maintaining the structural integrity of the orthosteric-binding site. We have assessed the activity of a series of GABA ρ1 receptors that incorporate a mutation at F124. Wild-type and mutant human GABA ρ1 subunits were expressed in Xenopus laevis oocytes and AD293 cells, and the pharmacology and kinetic properties of the receptors were measured using electrophysiological analysis. Mutation of F124 had minimal effect on receptor pharmacology. However, the rate of deactivation was significantly increased compared to wild type. This study provides further information about the role of residues within a novel hydrophobic area of the GABA ρ1 receptor. This knowledge can help future studies into the design of potent and subtype-selective ligands with therapeutic value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GABA:

γ-Aminobutyric acid

TPMPA:

(1,2,5,6-Tetrahydropyridine-4-yl)methylphosphinic acid

References

  • Abdel-Halim H, Hanrahan JR, Hibbs DE, Johnston GA, Chebib M (2008) A molecular basis for agonist and antagonist actions at GABA(C) receptors. Chem Biol Drug 71:306–327

    Article  CAS  Google Scholar 

  • Adamian L et al (2009) Structural model of rho1 GABAC receptor based on evolutionary analysis: testing of predicted protein-protein interactions involved in receptor assembly and function. Protein Sci 18:2371–2383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alakuijala A et al (2005) GABA receptor rho subunit expression in the developing rat brain. Brain Res Dev Brain Res 154:15–23

    Article  CAS  PubMed  Google Scholar 

  • Amin J, Weiss DS (1994) Homomeric rho 1 GABA channels: activation properties and domains. Receptor Channel 2:227–236

    CAS  Google Scholar 

  • Arnaud C, Gauthier P, Gottesmann C (2001) Study of a GABAC receptor antagonist on sleep-waking behavior in rats. Psychopharmacology 154:415–419

    Article  CAS  PubMed  Google Scholar 

  • Barry PH (1994) JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. J Neurosci Methods 51:107–116

    Article  CAS  PubMed  Google Scholar 

  • Blednov YA et al (2014) GABAA receptors containing rho1 subunits contribute to in vivo effects of ethanol in mice. PLoS One 9:e85525

    Article  PubMed Central  PubMed  Google Scholar 

  • Bormann J (2000) The ‘ABC’ of GABA receptors. Trends Pharmacol Sci 21:16–19

    Article  CAS  PubMed  Google Scholar 

  • Boue-Grabot E, Roudbaraki M, Bascles L, Tramu G, Bloch B, Garret M (1998) Expression of GABA receptor rho subunits in rat brain. J Neurochem 70:899–907

    Article  CAS  PubMed  Google Scholar 

  • Brejc K et al (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–276

    Article  CAS  PubMed  Google Scholar 

  • Carland JE et al (2009) Characterization of the effects of charged residues in the intracellular loop on ion permeation in alpha1 glycine receptor channels. J Biol Chem 284:2023–2030

    Article  CAS  PubMed  Google Scholar 

  • Cederholm JM, Schofield PR, Lewis TM (2009) Gating mechanisms in Cys-loop receptors. Eur Biophys J 39:37–49

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Weiss DS (1999) Channel opening locks agonist onto the GABAC receptor. Nat Neurosci 2:219–225

    Article  CAS  PubMed  Google Scholar 

  • Chebib M, Mewett KN, Johnston GA (1998) GABA(C) receptor antagonists differentiate between human rho1 and rho2 receptors expressed in Xenopus oocytes. Eur J Pharmacol 357:227–234

    Article  CAS  PubMed  Google Scholar 

  • Chebib M et al (2009) Novel, potent, and selective GABAC antagonists inhibit myopia development and facilitate learning and memory. J Pharmacol Exp Ther 328:448–457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng ZY, Chebib M, Schmid KL (2011) rho1 GABAC receptors are expressed in fibrous and cartilaginous layers of chick sclera and located on sclera fibroblasts and chondrocytes. J Neurochem 118:281–287

    Article  CAS  PubMed  Google Scholar 

  • Cheng ZY, Chebib M, Schmid KL (2012) Identification of GABA receptors in chick cornea. Mol Vis 18:1107–1114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Colquhoun D (1998) Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br J Pharmacol 125:924–947

    Article  CAS  PubMed  Google Scholar 

  • Cunha C, Monfils MH, Ledoux JE (2010) GABA(C) Receptors in the lateral amygdala: a possible novel target for the treatment of fear and anxiety disorders? Front Behav Neurosci 4:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Enz R, Cutting GR (1998) Molecular composition of GABAC receptors. Vision Res 38:1431–1441

    Article  CAS  PubMed  Google Scholar 

  • Gavande N et al (2011) Novel cyclic phosphinic acids as GABA(C) rho receptor antagonists: design, synthesis, and pharmacology. ACS Med Chem Lett 2:11–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanrahan JR, Mewett KN, Chebib M, Burden PM, Johnston GAR (2001) An improved, versatile synthesis of the GABA(C) antagonists (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and (piperidin-4-yl)methylphosphinic acid (P4MPA). J Chem Soc Perk T 1:2389–2392

    Article  Google Scholar 

  • Harrison NJ, Lummis SC (2006a) Locating the carboxylate group of GABA in the homomeric rho GABA(A) receptor ligand-binding pocket. J Biol Chem 281:24455–24461

    Article  CAS  PubMed  Google Scholar 

  • Harrison NJ, Lummis SC (2006b) Molecular modeling of the GABA(C) receptor ligand-binding domain. J Mol Model 12:317–324

    Article  CAS  PubMed  Google Scholar 

  • Hibbs RE, Gouaux E (2011) Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474:54–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hilf RJ, Dutzler R (2008) X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452:375–379

    Article  CAS  PubMed  Google Scholar 

  • Johnston GA (2002) Medicinal chemistry and molecular pharmacology of GABA(C) receptors. Curr Top Med Chem 2:903–913

    Article  CAS  PubMed  Google Scholar 

  • Laha KT, Tran PN (2013) Multiple tyrosine residues at the GABA binding pocket influence surface expression and mediate kinetics of the GABAA receptor. J Neurochem 124:200–209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lummis SC, Harrison NJ, Lester HA, Dougherty DA (2005) A cation-pi binding interaction with a tyrosine in the binding site of the GABAC receptor. Chem Biol 12:993–997

  • Lummis SC et al (2012) Multiple tyrosine residues contribute to GABA binding in the GABA(C) receptor binding pocket. ACS Chem Neurosci 3:186–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Osolodkin DI, Chupakhin VI, Palyulin VA, Zefirov NS (2007) Modeling and analysis of ligand-receptor interactions in the GABA(c) receptor. Dokl Biochem Biophys 412:25–28

    Article  CAS  PubMed  Google Scholar 

  • Puskar NL, Lester HA, Dougherty DA (2012) Probing the effects of residues located outside the agonist binding site on drug-receptor selectivity in the nicotinic receptor. ACS Chem Biol 7:841–846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rozzo A, Armellin M, Franzot J, Chiaruttini C, Nistri A, Tongiorgi E (2002) Expression and dendritic mRNA localization of GABAC receptor rho1 and rho2 subunits in developing rat brain and spinal cord. Eur J Neurosci 15:1747–1758

    Article  PubMed  Google Scholar 

  • Sedelnikova A, Smith CD, Zakharkin SO, Davis D, Weiss DS, Chang Y (2005) Mapping the rho1 GABA(C) receptor agonist binding pocket. Constructing a complete model. J Biol Chem 280:1535–1542

    Article  CAS  PubMed  Google Scholar 

  • Shimada S, Cutting G, Uhl GR (1992) gamma-Aminobutyric acid A or C receptor? gamma-Aminobutyric acid rho 1 receptor RNA induces bicuculline-, barbiturate-, and benzodiazepine-insensitive gamma-aminobutyric acid responses in Xenopus oocytes. Mol Pharmacol 41:683–687

    CAS  PubMed  Google Scholar 

  • Stone RA, Liu J, Sugimoto R, Capehart C, Zhu X, Pendrak K (2003) GABA, experimental myopia, and ocular growth in chick. Invest Ophthalmol Vis Sci 44:3933–3946

    Article  PubMed  Google Scholar 

  • Torres VI, Weiss DS (2002) Identification of a tyrosine in the agonist binding site of the homomeric rho1 gamma-aminobutyric acid (GABA) receptor that, when mutated, produces spontaneous opening. J Biol Chem 277:43741–43748

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Cheng Q, Takahashi A, Goubaeva F (2006) Kinetic properties of GABA rho1 homomeric receptors expressed in HEK293 cells. Biophys J 91:2155–2162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Xenopus Facility staff for care of frogs. IY acknowledges the support of a John Lamberton Scholarship. JEC acknowledges the support of a UNSW Vice Chancellor’s Research Fellowship.

Conflict of Interest

The authors declare no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chebib.

Additional information

Jane E. Carland and Izumi Yamamoto made equal contributions to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carland, J.E., Yamamoto, I., Hanrahan, J.R. et al. A Hydrophobic Area of the GABA ρ1 Receptor Containing Phenylalanine 124 Influences Both Receptor Activation and Deactivation. J Mol Neurosci 55, 305–313 (2015). https://doi.org/10.1007/s12031-014-0322-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0322-7

Keywords

Navigation