Skip to main content

Advertisement

Log in

DHA Abolishes the Detrimental Effect of Docetaxel on Downregulation of the MICA via Decreasing the Expression Level of MicroRNA-20a in Gastric Cancer

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Background

MHC class I chain-related protein A (MICA) is a membrane glycoprotein expressed abnormally on some malignant cells including gastric cancer (GC) cell and elicits anti-tumor immune responses. Downregulation of MICA expression could lead to immune-evasion of cancer cells.

Objective(s)

In this study, we aimed to investigate the effect of docosahexaenoic acid (DHA) and docetaxel alone or in combination on the expression level of MICA and its regulating microRNA (miRNA), miR-20a in MKN45 GC cell line.

Method(s)

MKN45 GC cell line was cultured and MTT assay was performed to determine IC50 of docetaxel. Cells were treated by 18.5 μM docetaxel and 100 μM DHA. After that, RNA extraction and cDNA synthesis were done and the expression level of MICA and miR-20a were determined by quantitative real-time PCR for both treated and untreated cell lines.

Results

Our findings showed less downregulation of the expression level of MICA by the combination of docetaxel/DHA (5.34-fold) compared with docetaxel (45.45-fold) and DHA (55.55-fold). Consistently, combination therapy led to the more downregulation of the expression level of the miR-20a (5.20-fold) in comparison to docetaxel (2.38-fold) and DHA (1.60-fold).

Conclusion(s)

As an unwanted effect of docetaxel therapy in GC, downregulation of MICA expression could lead to weak anti-tumor immune responses. By increasing the expression level of MICA, combination therapy of docetaxel with DHA would be useful to overcome this side effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R, Polkowski WP. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018;10:239–48. https://doi.org/10.2147/cmar.s149619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Park SC, Chun HJ. Chemotherapy for advanced gastric cancer: review and update of current practices. Gut and liver. 2013;7(4):385–93. https://doi.org/10.5009/gnl.2013.7.4.385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kanaji S, Suzuki S, Matsuda Y, Hasegawa H, Yamamoto M, Yamashita K, et al. Recent updates in perioperative chemotherapy and recurrence pattern of gastric cancer. Ann Gastroenterol Surg. 2018;2(6):400–5. https://doi.org/10.1002/ags3.12199.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Al-Batran S-E, Homann N, Schmalenberg H, Kopp H-G, Haag GM, Luley KB, et al. Perioperative chemotherapy with docetaxel, oxaliplatin, and fluorouracil/leucovorin (FLOT) versus epirubicin, cisplatin, and fluorouracil or capecitabine (ECF/ECX) for resectable gastric or gastroesophageal junction (GEJ) adenocarcinoma (FLOT4-AIO): a multicenter, randomized phase 3 trial. Proc Am Soc Clin Oncol. 2017;11:57.

    Google Scholar 

  5. Serini S, Calviello G. Long-chain omega-3 fatty acids and cancer: any cause for concern? Curr Opin Clin Nutri Metab Care. 2018;21(2):83–9. https://doi.org/10.1097/mco.0000000000000439.

    Article  CAS  Google Scholar 

  6. Liang P, Henning SM, Schokrpur S, Wu L, Doan N, Said J, et al. Effect of dietary omega-3 fatty acids on tumor-associated macrophages and prostate cancer progression. Prostate. 2016;76(14):1293–302. https://doi.org/10.1002/pros.23218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garcia CP, Lamarque AL, Comba A, Berra MA, Silva RA, Labuckas DO, et al. Synergistic anti-tumor effects of melatonin and PUFAs from walnuts in a murine mammary adenocarcinoma model. Nutrition (Burbank, Los Angeles County, Calif). 2015;31(4):570–7. https://doi.org/10.1016/j.nut.2014.06.001.

    Article  CAS  Google Scholar 

  8. Trombetta A, Maggiora M, Martinasso G, Cotogni P, Canuto RA, Muzio G. Arachidonic and docosahexaenoic acids reduce the growth of A549 human lung-tumor cells increasing lipid peroxidation and PPARs. Chem Biol Interact. 2007;165(3):239–50. https://doi.org/10.1016/j.cbi.2006.12.014.

    Article  CAS  PubMed  Google Scholar 

  9. Chapkin RS, Seo J, McMurray DN, Lupton JR. Mechanisms by which docosahexaenoic acid and related fatty acids reduce colon cancer risk and inflammatory disorders of the intestine. Chem Phys Lipids. 2008;153(1):14–23. https://doi.org/10.1016/j.chemphyslip.2008.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Menendez JA, Ropero S, Mehmi I, Atlas E, Colomer R, Lupu R. Overexpression and hyperactivity of breast cancer-associated fatty acid synthase (oncogenic antigen-519) is insensitive to normal arachidonic fatty acid-induced suppression in lipogenic tissues but it is selectively inhibited by tumoricidal alpha-linolenic and gamma-linolenic fatty acids: a novel mechanism by which dietary fat can alter mammary tumorigenesis. Int J Oncol. 2004;24(6):1369–83.

    CAS  PubMed  Google Scholar 

  11. Dai J, Shen J, Pan W, Shen S, Das UN. Effects of polyunsaturated fatty acids on the growth of gastric cancer cells in vitro. Lipids Health Dis. 2013;12:71. https://doi.org/10.1186/1476-511x-12-71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen D, Gyllensten U. MICA polymorphism: biology and importance in cancer. Carcinogenesis. 2014;35(12):2633–42. https://doi.org/10.1093/carcin/bgu215.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, Basher F, Wu JD. NKG2D ligands in tumor immunity: two sides of a coin. Front Immunol. 2015;6:97. https://doi.org/10.3389/fimmu.2015.00097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morisaki T, Onishi H, Koya N, Kiyota A, Tanaka H, Umebayashi M, et al. Combinatorial cytotoxicity of gemcitabine and cytokine-activated killer cells in hepatocellular carcinoma via the NKG2D-MICA/B system. Anticancer Res. 2011;31(7):2505–10.

    CAS  PubMed  Google Scholar 

  15. Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. microRNAs in cancer management. The Lancet Oncology. 2012;13(6):e249–58. https://doi.org/10.1016/s1470-2045(12)70073-6.

    Article  CAS  PubMed  Google Scholar 

  16. Tsoukas MA, Ko BJ, Witte TR, Dincer F, Hardman WE, Mantzoros CS. Dietary walnut suppression of colorectal cancer in mice: mediation by miRNA patterns and fatty acid incorporation. J Nutr Biochem. 2015;26(7):776–83. https://doi.org/10.1016/j.jnutbio.2015.02.009.

    Article  CAS  PubMed  Google Scholar 

  17. Shekari N, Baradaran B, Shanehbandi D, Kazemi T. Circulating microRNAs: valuable biomarkers for the diagnosis and prognosis of gastric cancer. Curr Med Chem. 2018;25(6):698–714. https://doi.org/10.2174/0929867324666171003123425.

    Article  CAS  PubMed  Google Scholar 

  18. Liu X, Cai H, Sheng W, Huang H, Long Z, Wang Y. microRNAs expression profile related with response to preoperative radiochemotherapy in patients with locally advanced gastric cancer. BMC Cancer. 2018;18(1):1048. https://doi.org/10.1186/s12885-018-4967-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stern-Ginossar N, Gur C, Biton M, Horwitz E, Elboim M, Stanietsky N, et al. Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol. 2008;9(9):1065–73. https://doi.org/10.1038/ni.1642.

    Article  CAS  PubMed  Google Scholar 

  20. Kishikawa T, Otsuka M, Yoshikawa T, Ohno M, Takata A, Shibata C, et al. Regulation of the expression of the liver cancer susceptibility gene MICA by microRNAs. Sci Rep. 2013;3:2739. https://doi.org/10.1038/srep02739.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang H, Lan P, Hou Z, Guan Y, Zhang J, Xu W, et al. Histone deacetylase inhibitor SAHA epigenetically regulates miR-17-92 cluster and MCM7 to upregulate MICA expression in hepatoma. Br J Cancer. 2015;112(1):112–21. https://doi.org/10.1038/bjc.2014.547.

    Article  CAS  PubMed  Google Scholar 

  22. Xie J, Liu M, Li Y, Nie Y, Mi Q, Zhao S. Ovarian tumor-associated microRNA-20a decreases natural killer cell cytotoxicity by downregulating MICA/B expression. Cell Mol Immunol. 2014;11(5):495–502. https://doi.org/10.1038/cmi.2014.30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Q, Wang Q, Sun W, Gao F, Liu L, Cheng L, et al. Change of circulating and tissue-based miR-20a in human cancers and associated prognostic implication: a systematic review and meta-analysis. Biomed Res Int. 2018;2018:6124927–14. https://doi.org/10.1155/2018/6124927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shekari N, Asghari F, Haghnavaz N, Shanehbandi D, Khaze V, Baradaran B, et al. Let-7a could serve as a biomarker for chemo-responsiveness to docetaxel in gastric cancer. Anti Cancer Agents Med Chem. 2019;19(3):304–9. https://doi.org/10.2174/1871520619666181213110258.

    Article  CAS  Google Scholar 

  25. Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A. Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr. 2004;79(6):935–45. https://doi.org/10.1093/ajcn/79.6.935.

    Article  CAS  PubMed  Google Scholar 

  26. Slagsvold JE, Pettersen CH, Storvold GL, Follestad T, Krokan HE, Schonberg SA. DHA alters expression of target proteins of cancer therapy in chemotherapy resistant SW620 colon cancer cells. Nutr Cancer. 2010;62(5):611–21. https://doi.org/10.1080/01635580903532366.

    Article  CAS  PubMed  Google Scholar 

  27. Serini S, Ottes Vasconcelos R, Fasano E, Calviello G. How plausible is the use of dietary n-3 PUFA in the adjuvant therapy of cancer? Nutr Res Rev. 2016;29(1):102–25. https://doi.org/10.1017/s0954422416000044.

    Article  PubMed  Google Scholar 

  28. Shaikh IA, Brown I, Schofield AC, Wahle KW, Heys SD. Docosahexaenoic acid enhances the efficacy of docetaxel in prostate cancer cells by modulation of apoptosis: the role of genes associated with the NF-kappaB pathway. Prostate. 2008;68(15):1635–46. https://doi.org/10.1002/pros.20830.

    Article  CAS  PubMed  Google Scholar 

  29. Gao K, Liang Q, Zhao ZH, Li YF, Wang SF. Synergistic anticancer properties of docosahexaenoic acid and 5-fluorouracil through interference with energy metabolism and cell cycle arrest in human gastric cancer cell line AGS cells. World J Gastroenterol. 2016;22(10):2971–80. https://doi.org/10.3748/wjg.v22.i10.2971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shekari N, Javadian M, Ghasemi M, Baradaran B, Darabi M, Kazemi T. Synergistic beneficial effect of docosahexaenoic acid (DHA) and docetaxel on the expression level of matrix metalloproteinase-2 (MMP-2) and MicroRNA-106b in gastric cancer. J Gastrointes Cancer. 2019. https://doi.org/10.1007/s12029-019-00205-0.

  31. D'Eliseo D, Velotti F. Omega-3 fatty acids and cancer cell cytotoxicity: implications for multi-targeted cancer therapy. J Clin Med. 2016;5(2). https://doi.org/10.3390/jcm5020015.

  32. Ghadially H, Brown L, Lloyd C, Lewis L, Lewis A, Dillon J, et al. MHC class I chain-related protein a and B (MICA and MICB) are predominantly expressed intracellularly in tumour and normal tissue. Br J Cancer. 2017;116(9):1208–17. https://doi.org/10.1038/bjc.2017.79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci U S A. 1996;93(22):12445–50. https://doi.org/10.1073/pnas.93.22.12445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ribeiro CH, Kramm K, Galvez-Jiron F, Pola V, Bustamante M, Contreras HR, et al. Clinical significance of tumor expression of major histocompatibility complex class I-related chains A and B (MICA/B) in gastric cancer patients. Oncol Rep. 2016;35(3):1309–17. https://doi.org/10.3892/or.2015.4510.

    Article  CAS  PubMed  Google Scholar 

  35. Chen Y, Lin WS, Zhu WF, Lin J, Zhou ZF, Huang CZ, et al. Tumor MICA status predicts the efficacy of immunotherapy with cytokine-induced killer cells for patients with gastric cancer. Immunol Res. 2016;64(1):251–9. https://doi.org/10.1007/s12026-015-8743-0.

    Article  CAS  PubMed  Google Scholar 

  36. Okita R, Wolf D, Yasuda K, Maeda A, Yukawa T, Saisho S, et al. Contrasting effects of the cytotoxic anticancer drug gemcitabine and the EGFR tyrosine kinase inhibitor Gefitinib on NK cell-mediated cytotoxicity via regulation of NKG2D ligand in non-small-cell lung cancer cells. PLoS One. 2015;10(10):e0139809. https://doi.org/10.1371/journal.pone.0139809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Codo P, Weller M, Meister G, Szabo E, Steinle A, Wolter M, et al. MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape. Oncotarget. 2014;5(17):7651–62. https://doi.org/10.18632/oncotarget.2287.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang B, Wang Q, Wang Z, Jiang J, Yu SC, Ping YF, et al. Metastatic consequences of immune escape from NK cell cytotoxicity by human breast cancer stem cells. Cancer Res. 2014;74(20):5746–57. https://doi.org/10.1158/0008-5472.can-13-2563.

    Article  CAS  PubMed  Google Scholar 

  39. Tang S, Fu H, Xu Q, Zhou Y. miR-20a regulates sensitivity of colorectal cancer cells to NK cells by targeting MICA. Biosci Rep. 2019;39(7):BSR20180695. https://doi.org/10.1042/bsr20180695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu SY, Wu QY, Zhang CX, Wang Q, Ling J, Huang XT, et al. miR-20a inhibits the killing effect of natural killer cells to cervical cancer cells by downregulating RUNX1. Biochem Biophys Res Commun. 2018;505(1):309–16. https://doi.org/10.1016/j.bbrc.2018.09.102.

    Article  CAS  PubMed  Google Scholar 

  41. Davidson LA, Wang N, Shah MS, Lupton JR, Ivanov I, Chapkin RS. n-3 polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon. Carcinogenesis. 2009;30(12):2077–84. https://doi.org/10.1093/carcin/bgp245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ross SA, Davis CD. MicroRNA, nutrition, and cancer prevention. Adv Nutri (Bethesda, Md). 2011;2(6):472–85. https://doi.org/10.3945/an.111.001206.

    Article  CAS  Google Scholar 

  43. Li H, Wu Q, Li T, Liu C, Xue L, Ding J, et al. The miR-17-92 cluster as a potential biomarker for the early diagnosis of gastric cancer: evidence and literature review. Oncotarget. 2017;8(28):45060–71. https://doi.org/10.18632/oncotarget.15023.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dhar S, Hicks C, Levenson AS. Resveratrol and prostate cancer: promising role for microRNAs. Mol Nutr Food Res. 2011;55(8):1219–29. https://doi.org/10.1002/mnfr.201100141.

    Article  CAS  PubMed  Google Scholar 

  45. Kang HW, Wang F, Wei Q, Zhao YF, Liu M, Li X, et al. miR-20a promotes migration and invasion by regulating TNKS2 in human cervical cancer cells. FEBS Lett. 2012;586(6):897–904. https://doi.org/10.1016/j.febslet.2012.02.020.

    Article  CAS  PubMed  Google Scholar 

  46. Huang G, Nishimoto K, Zhou Z, Hughes D, Kleinerman ES. miR-20a encoded by the miR-17-92 cluster increases the metastatic potential of osteosarcoma cells by regulating Fas expression. Cancer Res. 2012;72(4):908–16. https://doi.org/10.1158/0008-5472.can-11-1460.

    Article  CAS  PubMed  Google Scholar 

  47. Li X, Pan JH, Song B, Xiong EQ, Chen ZW, Zhou ZS, et al. Suppression of CX43 expression by miR-20a in the progression of human prostate cancer. Cancer Biol Ther. 2012;13(10):890–8. https://doi.org/10.4161/cbt.20841.

    Article  CAS  PubMed  Google Scholar 

  48. Chang Y, Liu C, Yang J, Liu G, Feng F, Tang J, et al. MiR-20a triggers metastasis of gallbladder carcinoma. J Hepatol. 2013;59(3):518–27. https://doi.org/10.1016/j.jhep.2013.04.034.

    Article  CAS  PubMed  Google Scholar 

  49. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435(7043):839–43. https://doi.org/10.1038/nature03677.

    Article  CAS  PubMed  Google Scholar 

  50. Pickering MT, Stadler BM, Kowalik TF. miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression. Oncogene. 2009;28(1):140–5. https://doi.org/10.1038/onc.2008.372.

    Article  CAS  PubMed  Google Scholar 

  51. Fan X, Liu Y, Jiang J, Ma Z, Wu H, Liu T, et al. miR-20a promotes proliferation and invasion by targeting APP in human ovarian cancer cells. Acta Biochim Biophys Sin. 2010;42(5):318–24.

    Article  CAS  Google Scholar 

  52. Wang M, Gu H, Qian H, Zhu W, Zhao C, Zhang X, et al. miR-17-5p/20a are important markers for gastric cancer and murine double minute 2 participates in their functional regulation. Euro J Cancer (Oxford, England : 1990). 2013;49(8):2010–21. https://doi.org/10.1016/j.ejca.2012.12.017.

    Article  CAS  Google Scholar 

  53. Li X, Zhang Z, Yu M, Li L, Du G, Xiao W, et al. Involvement of miR-20a in promoting gastric cancer progression by targeting early growth response 2 (EGR2). Int J Mol Sci. 2013;14(8):16226–39. https://doi.org/10.3390/ijms140816226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, et al. An E2F/miR-20a autoregulatory feedback loop. J Biol Chem. 2007;282(4):2135–43. https://doi.org/10.1074/jbc.M608939200.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was done by a grant from Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (Grant No. 12095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohid Kazemi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekari, N., Javadian, M., Ghaffari, S. et al. DHA Abolishes the Detrimental Effect of Docetaxel on Downregulation of the MICA via Decreasing the Expression Level of MicroRNA-20a in Gastric Cancer. J Gastrointest Canc 51, 545–551 (2020). https://doi.org/10.1007/s12029-019-00280-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-019-00280-3

Keywords

Navigation