Skip to main content

Advertisement

Log in

A Novel Approach to Screen for Somatosensory Evoked Potentials in Critical Care

  • Original work
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Somatosensory evoked potentials (SSEPs) help prognostication, particularly in patients with diffuse brain injury. However, use of SSEP is limited in critical care. We propose a novel, low-cost approach allowing acquisition of screening SSEP using widely available intensive care unit (ICU) equipment, specifically a peripheral “train-of-four” stimulator and standard electroencephalograph.

Methods

The median nerve was stimulated using a train-of-four stimulator, and a standard 21-channel electroencephalograph was recorded to generate the screening SSEP. Generation of the SSEP was supported by visual inspection, univariate event-related potentials statistics, and a multivariate support vector machine (SVM) decoding algorithm. This approach was validated in 15 healthy volunteers and validated against standard SSEPs in 10 ICU patients. The ability of this approach to predict poor neurological outcome, defined as death, vegetative state, or severe disability at 6 months, was tested in an additional set of 39 ICU patients.

Results

In each of the healthy volunteers, both the univariate and the SVM methods reliably detected SSEP responses. In patients, when compared against the standard SSEP method, the univariate event-related potentials method matched in nine of ten patients (sensitivity = 94%, specificity = 100%), and the SVM had 100% sensitivity and specificity when compared with the standard method. For the 49 ICU patients, we performed both the univariate and the SVM methods: a bilateral absence of short latency responses (n = 8) predicted poor neurological outcome with 0% FPR (sensitivity = 21%, specificity = 100%).

Conclusions

Somatosensory evoked potentials can reliably be recorded using the proposed approach. Given the very good but slightly lower sensitivity of absent SSEPs in the proposed screening approach, confirmation of absent SSEP responses using standard SSEP recordings is advised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wijdicks EFM, Hijdra A, Young GB, Bassetti CL, Wiebe S. Practice Parameter: Prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;67:203–10. https://doi.org/10.1212/01.wnl.0000227183.21314.cd.

    Article  CAS  PubMed  Google Scholar 

  2. Zandbergen EG, de Haan RJ, Stoutenbeek CP, Koelman JH, Hijdra A. Systematic review of early prediction of poor outcome in anoxicischaemic coma. The Lancet. 1998;352:1808–12. https://doi.org/10.1016/S0140-6736(98)04076-8.

    Article  CAS  Google Scholar 

  3. Houlden DA, Li C, Schwartz ML, Katic M. Median nerve somatosensory evoked potentials and the Glasgow Coma Scale as predictors of outcome in comatose patients with head injuries. Neurosurgery. 1990;27:701–7. https://doi.org/10.1097/00006123-199011000-00006.

    Article  CAS  PubMed  Google Scholar 

  4. Houlden DA, Taylor AB, Feinstein A, Midha R, Bethune AJ, Stewart CP, Schwartz ML. Early somatosensory evoked potential grades in comatose traumatic brain injury patients predict cognitive and functional outcome. Crit Care Med. 2010;38:167–74. https://doi.org/10.1097/CCM.0b013e3181c031b3.

    Article  PubMed  Google Scholar 

  5. Comanducci A, Boly M, Claassen J, De Lucia M, Gibson RM, Juan E, Laureys S, Naccache L, Owen AM, Rosanova M, Rossetti AO, Schnakers C, Sitt JD, Schiff ND, Massimini M. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: review of an IFCN-endorsed expert group. Clin Neurophysiol. 2020. https://doi.org/10.1016/j.clinph.2020.07.015.

    Article  PubMed  Google Scholar 

  6. Nolan P, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Olasveengen TM, Skrifvars MB, Taccone F, Soar J. European resuscitation council and european society of intensive care medicine guidelines 2021: post-resuscitation care. Intensive Care Med. 2021. https://doi.org/10.1007/s00134-021-06368-4.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sandroni C, D’Arrigo S, Cacciola S, Hoedemaekers CWE, Kamps MJA, Oddo M, Taccone FS, Di Rocco A, Meijer FJA, Westhall E, Antonelli M, Soar J, Nolan JP, Cronberg T. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensiv Care Med. 2020;46:1803–51. https://doi.org/10.1007/s00134-020-06198-w.

    Article  Google Scholar 

  8. André-Obadia N, Zyss J, Gavaret M, Lefaucheur J-P, Azabou E, Boulogne S, Guérit J-M, McGonigal A, Merle P, Mutschler V, Naccache L, Sabourdy C, Trébuchon A, Tyvaert L, Vercueil L, Rohaut B, Delval A. Recommendations for the use of electroencephalography and evoked potentials in comatose patients. Neurophysiol Clin. 2018;48:143–69. https://doi.org/10.1016/j.neucli.2018.05.038.

    Article  PubMed  Google Scholar 

  9. Provencio JJ, Hemphill JC, Claassen J, Edlow BL, Helbok R, Vespa PM, Diringer MN, Polizzotto L, Shutter L, Suarez JI, Stevens RD, Hanley DF, Akbari Y, Bleck TP, Boly M, Foreman B, Giacino JT, Hartings JA, Human T, Kondziella D, Ling GSF, Mayer SA, McNett M, Menon DK, Meyfroidt G, Monti MM, Park S, Pouratian N, Puybasset L, Rohaut B, Rosenthal ES, Schiff ND, Sharshar T, Wagner A, Whyte J, Olson DM. Neurocritical care society curing coma campaign, the curing coma campaign: framing initial scientific challenges-proceedings of the first curing coma campaign scientific advisory council meeting. Neurocrit Care. 2020;33:1–12. https://doi.org/10.1007/s12028-020-01028-9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cruccu G, Aminoff MJ, Curio G, Guerit JM, Kakigi R, Mauguiere F, Rossini PM, Treede R-D, Garcia-Larrea L. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol. 2008;119:1705–19. https://doi.org/10.1016/j.clinph.2008.03.016.

    Article  CAS  PubMed  Google Scholar 

  11. Tong W, Waldrop G, Thakur K, Roh D, Park S, Claassen J, Agarwal S (2021) Underutilization of a post-cardiac arrest consult service for standardization of a guideline-based multimodal neuroprognostication algorithm in comatose cardiac arrest survivors (1658), Neurology. 96. https://n.neurology.org/content/96/15_Supplement/1658 (accessed July 11, 2021).

  12. Friberg H, Cronberg T, Dünser MW, Duranteau J, Horn J, Oddo M. Survey on current practices for neurological prognostication after cardiac arrest. Resuscitation. 2015;90:158–62. https://doi.org/10.1016/j.resuscitation.2015.01.018.

    Article  PubMed  Google Scholar 

  13. Maciel CB, Barden MM, Youn TS, Dhakar MB, Greer DM. Neuroprognostication practices in postcardiac arrest patients: an international survey of critical care providers. Crit Care Med. 2020;48:e107–14. https://doi.org/10.1097/CCM.0000000000004107.

    Article  PubMed  Google Scholar 

  14. Zandbergen EGJ, Hijdra A, de Haan RJ, van Dijk JG, Ongerboer de Visser BW, Spaans F, Tavy DLJ, Koelman JHTM. Interobserver variation in the interpretation of SSEPs in anoxic–ischaemic coma. Clin Neurophysiol. 2006;117:1529–35. https://doi.org/10.1016/j.clinph.2006.03.018.

    Article  CAS  PubMed  Google Scholar 

  15. Jaeger B, Bouwes A, Binnekade JM, Hilgevoord AA, Horn J, van Rootselaar A-F. Knowledge about post-anoxic somatosensory evoked potentials − present or not? Eur J Neurol. 2014;21:890–3. https://doi.org/10.1111/ene.12405.

    Article  CAS  PubMed  Google Scholar 

  16. Hume AL, Cant BR, Shaw NA. Central somatosensory conduction time in comatose patients. Ann Neurol. 1979;5:379–84. https://doi.org/10.1002/ana.410050412.

    Article  CAS  PubMed  Google Scholar 

  17. Walser H, Emre M, Janzer R. Somatosensory evoked potentials in comatose patients: correlation with outcome and neuropathological findings. J Neurol. 1986;233:34–40. https://doi.org/10.1007/BF00313989.

    Article  CAS  PubMed  Google Scholar 

  18. Gabriel D, Muzard E, Henriques J, Mignot C, Pazart L, André-Obadia N, Ortega J-P, Moulin T. Replicability and impact of statistics in the detection of neural responses of consciousness. Brain. 2016;139:e30–e30. https://doi.org/10.1093/brain/aww065.

    Article  PubMed  Google Scholar 

  19. Hu L, Zhang ZG, Hung YS, Luk KDK, Iannetti GD, Hu Y. Single-trial detection of somatosensory evoked potentials by probabilistic independent component analysis and wavelet filtering. Clin Neurophysiol. 2011;122:1429–39. https://doi.org/10.1016/j.clinph.2010.12.052.

    Article  CAS  PubMed  Google Scholar 

  20. Koenig T, Melie-García L. A method to determine the presence of averaged event-related fields using randomization tests. Brain Topogr. 2010;23:233–42. https://doi.org/10.1007/s10548-010-0142-1.

    Article  PubMed  Google Scholar 

  21. Naccache L, Puybasset L, Gaillard R, Serve E, Willer J-C. Auditory mismatch negativity is a good predictor of awakening in comatose patients: a fast and reliable procedure. Clin Neurophysiol. 2005;116:988–9. https://doi.org/10.1016/j.clinph.2004.10.009.

    Article  PubMed  Google Scholar 

  22. Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods. 2007;164:177–90. https://doi.org/10.1016/j.jneumeth.2007.03.024.

    Article  PubMed  Google Scholar 

  23. Claassen J, Doyle K, Matory A, Couch C, Burger KM, Velazquez A, Okonkwo JU, King J-R, Park S, Agarwal S, Roh D, Megjhani M, Eliseyev A, Connolly ES, Rohaut B. Detection of brain activation in unresponsive patients with acute brain injury. N Engl J Med. 2019;380:2497–505. https://doi.org/10.1056/NEJMoa1812757.

    Article  PubMed  Google Scholar 

  24. American Clinical Neurophysiology Society. Guideline 9D guidelines on short-latency somatosensory evoked potentials. J Clin Neurophysiol. 2006;23:168–79.

    Article  Google Scholar 

  25. Lesenfants D, Habbal D, Lugo Z, Lebeau M, Horki P, Amico E, Pokorny C, Gómez F, Soddu A, Müller-Putz G, Laureys S, Noirhomme Q. An independent SSVEP-based brain–computer interface in locked-in syndrome. J Neural Eng. 2014;11:035002. https://doi.org/10.1088/1741-2560/11/3/035002.

    Article  CAS  PubMed  Google Scholar 

  26. Pfeiffer C, Nguissi NAN, Chytiris M, Bidlingmeyer P, Haenggi M, Kurmann R, Zubler F, Accolla E, Viceic D, Rusca M, Oddo M, Rossetti AO, De Lucia M. Somatosensory and auditory deviance detection for outcome prediction during postanoxic coma. Ann Clin Transl Neurol. 2018;5:1016–24. https://doi.org/10.1002/acn3.600.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tzovara A, Rossetti AO, Spierer L, Grivel J, Murray MM, Oddo M, De Lucia M. Progression of auditory discrimination based on neural decoding predicts awakening from coma. Brain. 2013;136:81–9. https://doi.org/10.1093/brain/aws264.

    Article  PubMed  Google Scholar 

  28. Giacino JT, Kalmar K, Whyte J. The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil. 2004;85:2020–9. https://doi.org/10.1016/j.apmr.2004.02.033.

    Article  PubMed  Google Scholar 

  29. Claassen J, Hansen HC. Early recovery after closed traumatic head injury: somatosensory evoked potentials and clinical findings. Crit Care Med. 2001;29:494–502. https://doi.org/10.1097/00003246-200103000-00005.

    Article  CAS  PubMed  Google Scholar 

  30. Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: A user-friendly application for MEG/EEG analysis. Comput Intell Neurosci. 2011;2011:1–13. https://doi.org/10.1155/2011/879716.

    Article  Google Scholar 

  31. Colon EJ, de Weerd AW. Long-latency somatosensory evoked potentials. J Clin Neurophysiol. 1986;3:279–96.

    Article  CAS  PubMed  Google Scholar 

  32. Comi G, Locatelli T, Fornara C, Cerutti S, Bianchi A, Liberati D. Topographic maps of single sweep long-latency median nerve SEPs. Electroencephalogr Clin Neurophysiol Suppl. 1990;41:28–33.

    CAS  PubMed  Google Scholar 

  33. Kiebel SJ, Tallon-Baudry C, Friston KJ. Parametric analysis of oscillatory activity as measured with EEG/MEG. Hum Brain Mapp. 2005;26:170–7. https://doi.org/10.1002/hbm.20153.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cichy RM, Pantazis D, Oliva A. Resolving human object recognition in space and time. Nat Neurosci. 2014;17:455–62. https://doi.org/10.1038/nn.3635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Müller KR, Mika S, Rätsch G, Tsuda K, Schölkopf B. An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw. 2001;12:181–201. https://doi.org/10.1109/72.914517.

    Article  PubMed  Google Scholar 

  36. King J-R, Dehaene S. Characterizing the dynamics of mental representations: the temporal generalization method. Trends Cogn Sci. 2014;18:203–10. https://doi.org/10.1016/j.tics.2014.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, Irwig L, Levine D, Reitsma JB, de Vet HCW, Bossuyt PMM. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016;6:e012799. https://doi.org/10.1136/bmjopen-2016-012799.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Turgeon AF, Lauzier F, Simard J-F, Scales DC, Burns KEA, Moore L, Zygun DA, Bernard F, Meade MO, Dung TC, Ratnapalan M, Todd S, Harlock J, Fergusson DA. Mortality associated with withdrawal of life-sustaining therapy for patients with severe traumatic brain injury: a Canadian multicentre cohort study. CMAJ. 2011;183:1581–8. https://doi.org/10.1503/cmaj.101786.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Alkhachroum A, Bustillo AJ, Asdaghi N, Marulanda-Londono E, Gutierrez CM, Samano D, Sobczak E, Foster D, Kottapally M, Merenda A, Koch S, Romano JG, O’Phelan K, Claassen J, Sacco RL, Rundek T. Withdrawal of life-sustaining treatment mediates mortality in patients with intracerebral hemorrhage with impaired consciousness. Stroke. 2021. https://doi.org/10.1161/STROKEAHA.121.035233.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Elmer J, Torres C, Aufderheide TP, Austin MA, Callaway CW, Golan E, Herren H, Jasti J, Kudenchuk PJ, Scales DC, Stub D, Richardson DK, Zive DM. Resuscitation outcomes consortium, association of early withdrawal of life-sustaining therapy for perceived neurological prognosis with mortality after cardiac arrest. Resuscitation. 2016;102:127–35. https://doi.org/10.1016/j.resuscitation.2016.01.016.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sitt JD, King J-R, El Karoui I, Rohaut B, Faugeras F, Gramfort A, Cohen L, Sigman M, Dehaene S, Naccache L. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain. 2014;137:2258–70. https://doi.org/10.1093/brain/awu141.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Engemann DA, Raimondo F, King J-R, Rohaut B, Louppe G, Faugeras F, Annen J, Cassol H, Gosseries O, Fernandez-Slezak D, Laureys S, Naccache L, Dehaene S, Sitt JD. Robust EEG-based cross-site and cross-protocol classification of states of consciousness. Brain. 2018;141:3179–92. https://doi.org/10.1093/brain/awy251.

    Article  PubMed  Google Scholar 

  43. Bekinschtein TA, Dehaene S, Rohaut B, Tadel F, Cohen L, Naccache L. Neural signature of the conscious processing of auditory regularities. Proc Natl Acad Sci U S A. 2009;106:1672–7. https://doi.org/10.1073/pnas.0809667106.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Casali AG, Gosseries O, Rosanova M, Boly M, Sarasso S, Casali KR, Casarotto S, Bruno M-A, Laureys S, Tononi G, Massimini M. A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med. 2013. https://doi.org/10.1126/scitranslmed.3006294.

    Article  PubMed  Google Scholar 

  45. Perez P, Valente M, Hermann B, Sitt J, Faugeras F, Demeret S, Rohaut B, Naccache L. Auditory event-related “global effect” predicts recovery of overt consciousness. Front Neurol. 2020;11:588233. https://doi.org/10.3389/fneur.2020.588233.

    Article  PubMed  Google Scholar 

  46. Allison T, McCarthy G, Wood CC, Jones SJ. Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A Rev Scalp Intracran Recordi, Brain. 1991;114(Pt 6):2465–503.

    Google Scholar 

  47. Elaina NS, Malik AS, Shams WK, Badruddin N, Abdullah JM, Reza MF. Localized N20 component of somatosensory evoked magnetic fields in frontoparietal brain tumor patients using noise-normalized approaches. Clin Neuroradiol. 2018;28:267–81. https://doi.org/10.1007/s00062-017-0557-0.

    Article  PubMed  Google Scholar 

  48. Papadelis C, Eickhoff SB, Zilles K, Ioannides AA. BA3b and BA1 activate in a serial fashion after median nerve stimulation: Direct evidence from combining source analysis of evoked fields and cytoarchitectonic probabilistic maps. Neuroimage. 2011;54:60–73. https://doi.org/10.1016/j.neuroimage.2010.07.054.

    Article  PubMed  Google Scholar 

  49. Barba C, Frot M, Valeriani M, Tonali P, Mauguière F. Distinct fronto-central N60 and supra-sylvian N70 middle-latency components of the median nerve SEPs as assessed by scalp topographic analysis, dipolar source modelling and depth recordings. Clin Neurophysiol. 2002;113:981–92.

    Article  CAS  PubMed  Google Scholar 

  50. Barba C, Valeriani M, Colicchio G, Mauguière F. Short and middle-latency Median Nerve (MN) SEPs recorded by depth electrodes in human pre-SMA and SMA-proper. Clin Neurophysiol. 2005;116:2664–74. https://doi.org/10.1016/j.clinph.2005.07.022.

    Article  CAS  PubMed  Google Scholar 

  51. Mauguière F, Merlet I, Forss N, Vanni S, Jousmäki V, Adeleine P, Hari R. Activation of a distributed somatosensory cortical network in the human brain. A dipole modelling study of magnetic fields evoked by median nerve stimulation. Part I: Location and activation timing of SEF sources. Electroencephalogr Clin Neurophysiol. 1997;104:281–9. https://doi.org/10.1016/s0013-4694(97)00006-0.

    Article  PubMed  Google Scholar 

  52. Mauguière F, Merlet I, Forss N, Vanni S, Jousmäki V, Adeleine P, Hari R. Activation of a distributed somatosensory cortical network in the human brain: a dipole modelling study of magnetic fields evoked by median nerve stimulation Part II: effects of stimulus rate, attention and stimulus detection. Electroencephalogr Clin Neurophysiol. 1997;104:290–5. https://doi.org/10.1016/s0013-4694(97)00018-7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived of and contributed to the design of the project, the interpretation of results, and the critical revision of the article. AS and BR performed data analyses and were responsible for primary drafting of the manuscript. The final manuscript was approved by all authors.

Corresponding author

Correspondence to Aude Sangare.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval/informed consent

The study was approved for both patients and healthy volunteers by the local institutional review board (Consciousness Recovery Project with Outcomes IRB-AAAR3191 approval [12/07/2017]). Procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation (institutional or regional) and with the Helsinki Declaration of 1975. Written informed consent was obtained from patient surrogates and from the healthy volunteers, respectively; all patients who recovered consciousness were given the opportunity to withdraw from the study.

Source of support

This project was directly supported by a grant from the DANA foundation in aide of Dr Claassen. Additionally, Dr. Claassen reports funding from the NIH (R01 NS106014 and R03 NS112760) and the McDonnel Foundation. Dr. Rohaut received postdoctoral grants from Amicale des Anciens Internes des Hôpitaux de Paris and Syndicat des Chefs de Cliniques et Assistants des Hôpitaux de Paris, Assistance Publique–Hôpitaux de Paris, and the Philippe Foundation. This work was funded by ‘‘Institut National de la Sante´ et de la Recherche Médicale’’ and ‘‘Poste d’Accueil Inserm program’’ (Aude Sangare).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6246 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangare, A., Rohaut, B., Borden, A. et al. A Novel Approach to Screen for Somatosensory Evoked Potentials in Critical Care. Neurocrit Care 40, 237–250 (2024). https://doi.org/10.1007/s12028-023-01710-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-023-01710-8

Keywords

Navigation