Skip to main content

Advertisement

Log in

The Spinal Cord Damage in a Rat Asphyxial Cardiac Arrest/Resuscitation Model

  • Original Work
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

After cardiac arrest/resuscitation (CA/R), animals often had massive functional restrictions including spastic paralysis of hind legs, disturbed balance and reflex abnormalities. Patients who have survived CA also develop movement restrictions/disorders. A successful therapy requires detailed knowledge of the intrinsic damage pattern and the respective mechanisms. Beside neurodegenerations in the cerebellum and cortex, neuronal loss in the spinal cord could be a further origin of such movement artifacts.

Methods

Thus, we aimed to evaluate the CA/R-induced degeneration pattern of the lumbar medulla spinalis by immunocytochemical expression of SMI 311 (marker of neuronal perikarya and dendrites), IBA1 (microglia marker), GFAP (marker of astroglia), calbindin D28k (marker of the cellular neuroprotective calcium-buffering system), MnSOD (neuroprotective antioxidant), the transcription factor PPARγ and the mitochondrial marker protein PDH after survival times of 7 and 21 days. The CA/R specimens were compared with those from sham-operated and completely naïve rats.

Results & Conclusion

The main ACA/R-mediated results were: (1) degeneration of lumbar spinal cord motor neurons, characterized by neuronal pyknotization and peri-neuronal tissue artifacts; (2) attendant activation of microglia in the short-term group; (3) attendant activation of astroglia in the long-term group; (4) degenerative pattern in the intermediate gray matter; (5) activation of the endogenous anti-oxidative defense systems calbindin D28k and MnSOD; (6) activation of the transcription factor PPARγ, especially in glial cells of the gray matter penumbra; and (7) activation of mitochondria. Moreover, marginal signs of anesthesia-induced cell stress were already evident in sham animals when compared with completely naïve spinal cords. A correlation between the NDS and the motor neuronal loss could not be verified. Thus, the NDS appears to be unsuitable as prognostic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACA/R:

Asphyxial cardiac arrest/resuscitation

CTCF:

Corrected total cell fluorescence

DAPI:

6-Diamidino-2-phenylindole

ECG:

Electrocardiogram

FCS:

Fetal calf serum

GFAP:

Glial fibrillary acidic protein

IBA1:

Ionized calcium binding adaptor molecule 1

ID:

Integrated density

IPPV:

Intermittent positive pressure ventilation

LD:

Linear density

MAP:

Mean arterial pressure

MAP2:

Microtubule-associated protein 2

MnSOD:

Manganese-dependent superoxide dismutase (mitochondrial SOD 2)

PBS:

Phosphate-buffered saline

PDH:

Pyruvate dehydrogenase

PFA:

Phosphate-buffered paraformaldehyde

PPARγ:

Peroxisome proliferator-activated receptor gamma

ROSC:

Return of spontaneous circulation

ST:

Survival time

References

  1. Keilhoff G, Nguyen Thi TM, Esser T, Ebmeyer U. Relative resilience of cerebellar purkinje cells in a cardiac arrest/resuscitation rat model. Neurocrit Care. 2019;32:775–89.

    Google Scholar 

  2. Keilhoff G, Esser T, Titze M, Ebmeyer U, Schild L. High-potential defense mechanisms of neocortex in a rat model of transient asphyxia induced cardiac arrest. Brain Res. 2017;1674:42–54.

    CAS  PubMed  Google Scholar 

  3. Keilhoff G, Esser T, Titze M, Ebmeyer U, Schild L. Gynostemma pentaphyllum is neuroprotective in a rat model of cardiopulmonary resuscitation. Exp Ther Med. 2017;14(6):6034–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zulch KJ. Traumatic disturbances of the motoric and sensory system and their therapy. Deutsche Zeitschrift fur Nervenheilkunde. 1951;166(5):400–30.

    CAS  PubMed  Google Scholar 

  5. Dambska M, Dydyk L, Szretter T, Wozniewicz J, Myers RE. Topography of lesions in newborn and infant brains following cardiac arrest and resuscitation. Damage to brain and hemispheres. Biol Neonate. 1976;29(3–4):194–206.

    CAS  PubMed  Google Scholar 

  6. Towfighi J, Vannucci RC. Neuropathology of normothermic circulatory arrest in newborn dogs. Acta Neuropathol. 1997;93(5):485–93.

    CAS  PubMed  Google Scholar 

  7. Kochanek PM, Tasker RC. Pediatric neurointensive care: 2008 update for the Rogers’ Textbook of Pediatric Intensive Care. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2009;10(4):517–23.

    Google Scholar 

  8. Wang B, Armstrong JS, Reyes M, Kulikowicz E, Lee JH, Spicer D, et al. White matter apoptosis is increased by delayed hypothermia and rewarming in a neonatal piglet model of hypoxic ischemic encephalopathy. Neuroscience. 2016;316:296–310.

    CAS  PubMed  Google Scholar 

  9. Santos PT, O’Brien CE, Chen MW, Hopkins CD, Adams S, Kulikowicz E, et al. Proteasome biology is compromised in white matter after asphyxic cardiac arrest in neonatal piglets. J Am Heart Assoc. 2018;7(20):e009415.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Inamasu J, Nakatsukasa M, Hirose Y. Computed tomography evaluation of the brain and upper cervical spine in patients with traumatic cardiac arrest who achieved return of spontaneous circulation. Neurol Med Chir. 2013;53(9):585–9.

    Google Scholar 

  11. Klinke R, Pape HC, Silbernagl S. Physiologie. Stuttgart: Thieme; 2005.

    Google Scholar 

  12. Trepel M. Neuroanatomie. München: Urban & Fischer; 2004.

    Google Scholar 

  13. Schutz B. Imbalanced excitatory to inhibitory synaptic input precedes motor neuron degeneration in an animal model of amyotrophic lateral sclerosis. Neurobiol Dis. 2005;20(1):131–40.

    PubMed  Google Scholar 

  14. O’Donnell R, Molon-Noblot S, Laroque P, Rigby M, Smith D. The ultrastructural localisation of the N-methyl-D-aspartate NR2B receptor subunit in rat lumbar spinal cord. Neurosci Lett. 2004;371(1):24–9.

    PubMed  Google Scholar 

  15. Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front Cell Neurosci. 2020;14:51.

    PubMed  PubMed Central  Google Scholar 

  16. Martin LJ, Al-Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera-Cailliau C. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res Bull. 1998;46(4):281–309.

    CAS  PubMed  Google Scholar 

  17. Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 2010;460(2):525–42.

    CAS  PubMed  Google Scholar 

  18. Duggal N, Lach B. Selective vulnerability of the lumbosacral spinal cord after cardiac arrest and hypotension. Stroke. 2002;33(1):116–21.

    CAS  PubMed  Google Scholar 

  19. Keilhoff G, Titze M, Rathert H, Lucas B, Esser T, Ebmeyer U. Normoxic post-ROSC ventilation delays hippocampal CA1 neurodegeneration in a rat cardiac arrest model, but does not prevent it. Exp Brain Res. 2020;238(4):807–24.

    CAS  PubMed  Google Scholar 

  20. Katz L, Ebmeyer U, Safar P, Radovsky A, Neumar R. Outcome model of asphyxial cardiac arrest in rats. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 1995;15(6):1032–9.

    CAS  Google Scholar 

  21. Widmer R, Engels M, Voss P, Grune T. Postanoxic damage of microglial cells is mediated by xanthine oxidase and cyclooxygenase. Free Radic Res. 2007;41(2):145–52.

    CAS  PubMed  Google Scholar 

  22. Venkatesan A, Frucht S. Movement disorders after resuscitation from cardiac arrest. Neurol Clin. 2006;24(1):123–32.

    PubMed  Google Scholar 

  23. Khot S, Tirschwell DL. Long-term neurological complications after hypoxic-ischemic encephalopathy. Semin Neurol. 2006;26(4):422–31.

    PubMed  Google Scholar 

  24. Scheibe F, Neumann WJ, Lange C, Scheel M, Furth C, Kohnlein M, et al. Movement disorders after hypoxic brain injury following cardiac arrest in adults. Eur J Neurol. 2020. https://doi.org/10.1111/ene.14326.

    Article  PubMed  Google Scholar 

  25. Legriel S, Le Stang MB, Merceron S, Cronier P, Troche G. Ongoing abdominal status myoclonus in postanoxic coma. Neurocrit Care. 2012;16(1):136–8.

    PubMed  Google Scholar 

  26. Caronna JJ, Finklestein S. Neurological syndromes after cardiac arrest. Stroke. 1978;9(5):517–20.

    CAS  PubMed  Google Scholar 

  27. Gilles FH, Nag D. Vulnerability of human spinal cord in transient cardiac arrest. Neurology. 1971;21(8):833–9.

    CAS  PubMed  Google Scholar 

  28. Sliwa JA, Maclean IC. Ischemic myelopathy: a review of spinal vasculature and related clinical syndromes. Arch Phys Med Rehabil. 1992;73(4):365–72.

    CAS  PubMed  Google Scholar 

  29. Sladky JT, Rorke LB. Perinatal hypoxic/ischemic spinal cord injury. Pediatr Pathol. 1986;6(1):87–101.

    CAS  PubMed  Google Scholar 

  30. Kuwamura M, Yoshida T, Yamate J, Kotani T, Sakuma S. Hereditary cerebellar vermis defect in the Lewis rat. Brain Res Dev Brain Res. 1994;83(2):294–8.

    CAS  PubMed  Google Scholar 

  31. Liachenko S, Tang P, Hamilton RL, Xu Y. A reproducible model of circulatory arrest and remote resuscitation in rats for NMR investigation. Stroke. 1998;29(6):1229–38 (discussion 38–9).

    CAS  PubMed  Google Scholar 

  32. Ahn JH, Lee TK, Kim B, Lee JC, Tae HJ, Cho JH, et al. Therapeutic hypothermia improves hind limb motor outcome and attenuates oxidative stress and neuronal damage in the lumbar spinal cord following cardiac arrest. Antioxidants. 2020;9(1):38.

    CAS  PubMed Central  Google Scholar 

  33. Manto M, Bower JM, Conforto AB, Delgado-Garcia JM, da Guarda SN, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control–the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11(2):457–87.

    PubMed  PubMed Central  Google Scholar 

  34. Aravamuthan BR, Shoykhet M. Long-term increase in coherence between the basal ganglia and motor cortex after asphyxial cardiac arrest and resuscitation in developing rats. Pediatr Res. 2015;78(4):371–9.

    PubMed  PubMed Central  Google Scholar 

  35. Kudo Y, Ohtaki H, Dohi K, Yin L, Nakamachi T, Endo S, et al. Neuronal damage in rat brain and spinal cord after cardiac arrest and massive hemorrhagic shock. Crit Care Med. 2006;34(11):2820–6.

    PubMed  Google Scholar 

  36. Moore JC. Neonatal neuropathology. Phys Occup Ther Pediatr. 1986;6(3–4):55–90.

    Google Scholar 

  37. Wu Y, Satkunendrarajah K, Fehlings MG. Riluzole improves outcome following ischemia-reperfusion injury to the spinal cord by preventing delayed paraplegia. Neuroscience. 2014;265:302–12.

    CAS  PubMed  Google Scholar 

  38. Schwaller B. Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol. 2010;2(11):a004051.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Palecek J, Lips MB, Keller BU. Calcium dynamics and buffering in motoneurones of the mouse spinal cord. J Physiol. 1999;520(Pt 2):485–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Burke RE, Baimbridge KG. Relative loss of the striatal striosome compartment, defined by calbindin-D28k immunostaining, following developmental hypoxic-ischemic injury. Neuroscience. 1993;56(2):305–15.

    CAS  PubMed  Google Scholar 

  41. Timmermans JA, Bindels RJ, Van Os CH. Stimulation of plasma membrane Ca2+ pump by calbindin-D28k and calmodulin is additive in EGTA-free solutions. J Nutr. 1995;125(7 Suppl):1981S–6S.

    CAS  PubMed  Google Scholar 

  42. Rosenfeld J, Cook S, James R. Expression of superoxide dismutase following axotomy. Exp Neurol. 1997;147(1):37–47.

    CAS  PubMed  Google Scholar 

  43. Melov S, Schneider JA, Day BJ, Hinerfeld D, Coskun P, Mirra SS, et al. A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nat Genet. 1998;18(2):159–63.

    CAS  PubMed  Google Scholar 

  44. Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet. 1996;13(1):43–7.

    CAS  PubMed  Google Scholar 

  45. Lindenau J, Noack H, Possel H, Asayama K, Wolf G. Cellular distribution of superoxide dismutases in the rat CNS. Glia. 2000;29(1):25–34.

    CAS  PubMed  Google Scholar 

  46. Meyer M, Garay LI, Kruse MS, Lara A, Gargiulo-Monachelli G, Schumacher M, et al. Protective effects of the neurosteroid allopregnanolone in a mouse model of spontaneous motoneuron degeneration. J Steroid Biochem Mol Biol. 2017;174:201–16.

    CAS  PubMed  Google Scholar 

  47. Aleshin S, Reiser G. Role of the peroxisome proliferator-activated receptors (PPAR)-alpha, beta/delta and gamma triad in regulation of reactive oxygen species signaling in brain. Biol Chem. 2013;394(12):1553–70.

    CAS  PubMed  Google Scholar 

  48. Zolezzi JM, Santos MJ, Bastias-Candia S, Pinto C, Godoy JA, Inestrosa NC. PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol Rev Camb Philos Soc. 2017;92(4):2046–69.

    PubMed  Google Scholar 

  49. Iglesias J, Morales L, Barreto GE. metabolic and inflammatory adaptation of reactive astrocytes: role of PPARs. Mol Neurobiol. 2017;54(4):2518–38.

    CAS  PubMed  Google Scholar 

  50. Lee EJ, Park JS, Lee YY, Kim DY, Kang JL, Kim HS. Anti-inflammatory and anti-oxidant mechanisms of an MMP-8 inhibitor in lipoteichoic acid-stimulated rat primary astrocytes: involvement of NF-kappaB, Nrf2, and PPAR-gamma signaling pathways. J Neuroinflamm. 2018;15(1):326.

    CAS  Google Scholar 

  51. Giampietro L, Gallorini M, De Filippis B, Amoroso R, Cataldi A, di Giacomo V. PPAR-gamma agonist GL516 reduces oxidative stress and apoptosis occurrence in a rat astrocyte cell line. Neurochem Int. 2019;126:239–45.

    CAS  PubMed  Google Scholar 

  52. Kark RA, Rodriguez-Budelli M. Pyruvate dehydrogenase deficiency in spinocerebellar degenerations. Neurology. 1979;29(1):126–31.

    CAS  PubMed  Google Scholar 

  53. Marangos PJ, Turkel CC, Dziewanowska ZE, Fox AW. Dichloroacetate and cerebral ischaemia therapeutics. Expert Opin Investig Drugs. 1999;8(4):373–82.

    CAS  PubMed  Google Scholar 

  54. Miquel E, Cassina A, Martinez-Palma L, Bolatto C, Trias E, Gandelman M, et al. Modulation of astrocytic mitochondrial function by dichloroacetate improves survival and motor performance in inherited amyotrophic lateral sclerosis. PLoS ONE. 2012;7(4):e34776.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Putzu A, Valtorta S, Di Grigoli G, Haenggi M, Belloli S, Malgaroli A, et al. Regional differences in cerebral glucose metabolism after cardiac arrest and resuscitation in rats using [(18)F]FDG positron emission tomography and autoradiography. Neurocrit Care. 2018;28(3):370–8.

    CAS  PubMed  Google Scholar 

  56. Kobrine AI, Evans DE, Rizzoli HV. The effects of ischemia on long-tract neural conduction in the spinal cord. J Neurosurg. 1979;50(5):639–44.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors wish to thank Leona Bück for the excellent technical assistance.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors have made substantive contributions to the study: GK: conceived the study, was responsible for data analyses, writing the manuscript and preparing the illustration of results. MT & HR: carried out surgery including post resuscitation care and tissue sampling. TMNT: carried out immunohistochemical stainings. UE: established the experimental model and supervised the animal experiments and critically reviewed the manuscript.

Corresponding author

Correspondence to Gerburg Keilhoff.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval/informed consent

This study was granted according to the requirements of the German Animal welfare Act on the Use of Experimental Animals and the Animal Care and Use Committees of Saxony-Anhalt (permit number 42502-2-2-947 Uni MD).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 1548 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keilhoff, G., Titze, M., Rathert, H. et al. The Spinal Cord Damage in a Rat Asphyxial Cardiac Arrest/Resuscitation Model. Neurocrit Care 34, 844–855 (2021). https://doi.org/10.1007/s12028-020-01094-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-020-01094-z

Keywords

Navigation