Skip to main content

Advertisement

Log in

Moderate Traumatic Brain Injury: The Grey Zone of Neurotrauma

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Moderate traumatic brain injury (MTBI) is poorly defined in the literature and the nomenclature “moderate” is misleading, because up to 15 % of such patients may die. MTBI is a heterogeneous entity that shares many aspects of its pathophysiology and management with severe traumatic brain injury. Many patients who ‘’talk and died’’ are MTBI. The role of neuroimaging is essential for the proper management of these patients. To analyze all aspects of the pathophysiology and management of MTBI, proposing a new way to categorize it considering the clinical picture and neuroimaging findings. We proposed a different approach to the group of patients with Glasgow Coma Scale (GCS) ranging from 9 through 13 and we discuss the rationale for this proposal. Patients with lower GCS scores (9–10), especially those with significant space-occupying lesions on the CT scan, should be managed following the guidelines for severe traumatic brain injury, with ICU observation, frequent serial computed tomography (CT) scanning and ICP monitoring. On the other hand, those with higher range GCS (11–13) can be managed more conservatively with serial neurological examination and CT scans. Given the available evidence, MTBI is an entity that needs reclassification. Large-scale and well-designed studies are urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7:728–41.

    Article  PubMed  Google Scholar 

  2. Zammit C, Knight WA. Severe traumatic brain injury in adults. Emerg Med Pract. 2013;15:1–28.

    PubMed  Google Scholar 

  3. Humphreys I, Wood RL, Phillips CJ, Macey S. The costs of traumatic brain injury: a literature review. Clinicoecon Outcomes Res. 2013;26(5):281–7.

    Article  Google Scholar 

  4. New South Wales Motor Accident Authority Guidelines for mild traumatic brain injury following closed head injury. Sydney, Australia: New South Wales Motor Accident Authority; 2008.

  5. Defense and Veterans Brain Injury Center Updated mTBI clinical guidance. Washington, DC: Defense and Veterans Brain Injury Center; 2008. www.dvbic.org/pdfs/mTBI_recs_for_CONUS.pdf. Accessed 2012 Jan 20.

  6. MTBI Guidelines Development Team Guidelines for mild traumatic brain injury and persistent symptoms. Toronto, ON: Ontario Neurotrauma Foundation; 2010. www.onf.org/documents/Guidelines%20for%20Mild%20Traumatic%20Brain%20Injury%20and%20Persistent%20Symptoms.pdf. Accessed 2012 Jan 25.

  7. The Management of Concussion/mTBI Working Group VA/DoD clinical practice guideline for management of concussion/mild traumatic brain injury. Washington, DC: Department of Veterans Affairs and Department of Defense; 2009.

  8. Marshall S, Bayley M, McCullagh S, Velikonja D, Berrigan L. Clinical practice guidelines for mild traumatic brain injury and persistent symptoms. Can Fam Physician. 2012;58(257–67):e128–40.

    PubMed Central  Google Scholar 

  9. Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons. Guidelines for the management of severe traumatic brain injury. J Neurotrauma. 2007;24(Suppl 1):S1–106.

    Google Scholar 

  10. Maas AI, Dearden M, Teasdale GM, Braakman R, Cohadon F, Iannotti F, et al. EBIC-guidelines for management of severe head injury in adults. European Brain Injury Consortium. Acta Neurochir (Wien). 1997;139:286–94.

    Article  CAS  PubMed  Google Scholar 

  11. http://www.ncbi.nlm.nih.gov/pubmed.

  12. Frattalone AR, Ling GS. Moderate and severe traumatic brain injury: pathophysiology and management. Neurosurg Clin N Am. 2013;24:309–19.

    Article  PubMed  Google Scholar 

  13. Colohan AR, Oyesiku NM. Moderate head injury: an overview. J Neurotrauma. 1992;9(Suppl 1):S259–64.

    PubMed  Google Scholar 

  14. Timmonds SD, Winestone JS. Moderate brain injury. In: Jallo J, Lotus C, editors. Neurotrauma and critical care. Stuttgart: Thieme Medical; 2009. p. 208–19.

    Google Scholar 

  15. Andriessen TM, Horn J, Franschman G, van der Naalt J, Haitsma I, Jacobs B, et al. Epidemiology, severity classification, and outcome of moderate and severe traumatic brain injury: a prospective multicenter study. J Neurotrauma. 2011;28:2019–31.

    Article  PubMed  Google Scholar 

  16. Reilly PL. Brain injury: the pathophysiology of the first hours. Talk and die revisited. J Clin Neurosci. 2001;8:398–403.

    Article  CAS  PubMed  Google Scholar 

  17. Lobato RD, Rivas JJ, Gomez PA, Castañeda M, Cañizal JM, Sarabia R, et al. Head-injured patients who talk and deteriorate into coma. Analysis of 211 cases studied with computerized tomography. J Neurosurg. 1991;75:256–61.

    Article  CAS  PubMed  Google Scholar 

  18. Ratanalert S, Chompikul J, Hirunpat S. Talked and deteriorated head injury patients: how many poor outcomes can be avoided? J Clin Neurosci. 2002;9:640–3.

    Article  PubMed  Google Scholar 

  19. Rockswold GL, Pheley PJ. Patients who talk and deteriorate. Ann Emerg Med. 1993;22:1004–7.

    Article  CAS  PubMed  Google Scholar 

  20. Dunn LT, Fitzpatrick MO, Beard D, Henry JM. Patients with a head injury who talk and die in the 1990s. J Trauma. 2003;54:497–502.

    Article  PubMed  Google Scholar 

  21. Tan JE, Ng I, Lim J, Wong HB, Yeo TT. Patients who talk and deteriorate: a new look at an old problem. Ann Acad Med Singap. 2004;33:489–93.

    CAS  PubMed  Google Scholar 

  22. Petersen EC, Chesnut RM. Talk and die revisited: bifrontal contusions and late deterioration. J Trauma. 2011;71:1588–92.

    Article  Google Scholar 

  23. Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;2:81–4.

    Article  CAS  PubMed  Google Scholar 

  24. Ko DY. Clinical evaluation of patients with head trauma. Neuroimag Clin N Am. 2002;12:165–74.

    Article  Google Scholar 

  25. Fearnside M, McDougall P. Moderate head injury: a system of neurotrauma care. Aust NZJ Surg. 1998;68:58–64.

    Article  CAS  Google Scholar 

  26. Vitaz TW, Jenks J, Raque GH, Shields CB. Outcome following moderate traumatic brain injury. Surg Neurol. 2003;60:285–91 discussion 291.

    Article  PubMed  Google Scholar 

  27. Annegers JF, Grabow JD, Kurland LT, Laws ER Jr. The incidence, causes, and secuelar trends of head trauma in Olmsted County, Minnesota, 1935-1974. Neurology. 1980;30:912–9.

    Article  CAS  PubMed  Google Scholar 

  28. Rimel RW, Giordani B, Barth JT, Jane JA. Moderate head injury: completing the clinical spectrum of brain trauma. Neurosurgery. 1982;11:344–51.

    Article  CAS  PubMed  Google Scholar 

  29. Tabaddor K, Mattis S, Zazula T. Cognitive sequelae and recovery course after moderate and severe head injury. Neurosurgery. 1984;14:701–8.

    Article  CAS  PubMed  Google Scholar 

  30. Kraus JF, Black MA, Hessol N, Ley P, Rokaw W, Sullivan C, et al. The incidence of acute brain injury and serious impairment in a defined population. Am J Epidemiol. 1984;119:186–201.

    CAS  PubMed  Google Scholar 

  31. Levin HS, Goldstein FC, High WM Jr, Eisenberg HM. Disproportionately severe memory deficit in relation to normal intellectual functioning after closed head injury. J Neurol Neurosurg Psychiatry. 1988;51:1294–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stein SC, Ross SE. Moderate head injury. A guide to initial management. J Neurosurg. 1992;77:562–4.

    Article  CAS  PubMed  Google Scholar 

  33. Stein SC. Minor head injury: 13 is unlucky number. J Trauma. 2001;50:759–60.

    Article  CAS  PubMed  Google Scholar 

  34. Fabbri A, Servadei F, Marchesini G, Stein SC, Vandelli A. Early predictors of unfavourable outcome in subjects with moderate head injury in the emergency department. J Neurol Neurosurg Psychiatry. 2008;79:567–73.

    Article  CAS  PubMed  Google Scholar 

  35. Compagnone C, d’Avella D, Servadei F, Angileri FF, Brambilla G, Conti C, et al. Patients with moderate head injury: a prospective multicenter study of 315 patients. Neurosurgery. 2009;64:690–6 discussion 696–7.

    Article  PubMed  Google Scholar 

  36. Teasdale G, Maas A, Lecky F, Manley G, Stocchetti N, Murray G. The Glasgow Coma Scale at 40 years: standing the test of time. Lancet Neurol. 2014;13:844–54.

    Article  PubMed  Google Scholar 

  37. Stocchetti N, Pagan F, Calappi E, Canavesi K, Beretta L, Citerio G, et al. Inaccurate early assessment of neurological severity in head injury. J Neurotrauma. 2004;21:1131–40.

    Article  PubMed  Google Scholar 

  38. Stuke L, Diaz-Arrastia R, Gentilello LM, Shafi S. Effect of alcohol on Glasgow. Coma Scale in head-injured patients. Ann Surg. 2007;245:651–5.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rundhaug NP, Moen KG, Skandsen T, Schirmer-Mikalsen K, Lund SB, Hara S, Vik A. Moderate and severe traumatic brain injury: effect of blood alcohol concentration on Glasgow Coma Scale score and relation to computed tomography findings. J Neurosurg. 2015;122:211–8.

    Article  PubMed  Google Scholar 

  40. Wijdicks EF, Bamlet WR, Maramattom BV, Manno EM, McClelland RL. Validation of a new coma scale: the FOUR score. Ann Neurol. 2005;58:585–93.

    Article  PubMed  Google Scholar 

  41. McMahon CG, Yates DW, Campbell FM, Hollis S, Woodford M. Unexpected contribution of moderate traumatic brain injury to death after major trauma. J Trauma. 1999;47:891–5.

    Article  CAS  PubMed  Google Scholar 

  42. Gennarelli TA. Mechanisms of brain injury. J Emerg Med. 1993;11(Suppl 1):5–11.

    PubMed  Google Scholar 

  43. Sahuquillo J, Poca MA. Diffuse axonal injury after head trauma. A review. In: Pickard J, Dolenc VV, Lobo-Antunes J, Reulen HJ, Sindou M, Strong AJ, et al., editors. Advances and technical standards in neurosurgery, vol. 27. Wien: Springer; 2002. p. 23–86.

    Chapter  Google Scholar 

  44. Abdel-Dayem HM, Abu-Judeh H, Kumar M, Atay S, Naddaf S, El-Zeftawy H, Luo JQ. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury. Clin Nucl Med. 1998;23:309–17.

    Article  CAS  PubMed  Google Scholar 

  45. Chesnut RM, Marshall LF, Klauber MR, et al. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993;34:216.

    Article  CAS  PubMed  Google Scholar 

  46. Manley G, Knudson MM, Morabito D, et al. Hypotension, hypoxia, and head injury: frequency, duration, and consequences. Arch Surg. 2001;136:1118.

    Article  CAS  PubMed  Google Scholar 

  47. Marmarou A, Anderson L, Ward J, et al. Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg. 1991;75:159.

    Google Scholar 

  48. McHugh GS, Engel DC, Butcher I, et al. Prognostic value of secondary insults in traumatic brain injury: results from the IMPACT study. J Neurotrauma. 2007;24:287.

    Article  PubMed  Google Scholar 

  49. Graham DI, Adams JH, Doyle D. Ischemic brain damage in fatal non-missile head injuries. J Neurol Sci. 1978;39:213–34.

    Article  CAS  PubMed  Google Scholar 

  50. Zauner A, Daugherty WP, Bullock MR, et al. Brain oxygenation and energy metabolism: part I-biological function and pathophysiology. Neurosurgery. 2002;51:289–301.

    PubMed  Google Scholar 

  51. Poca MA, Sahuquillo J, Mena MP, Vilalta A, Rivero M. Actualizaciones en los métodos de monitorización cerebral regional en los pacientes neurocríticos: presión tisular de oxigeno, microdiálisis cerebral y técnica de espectroscopia por infrarrojos. Neurocirugia. 2005;16:385–410.

    Article  CAS  PubMed  Google Scholar 

  52. Marin-Caballos AJ, Murillo-Cabezas F, Dominguez-Roldan JM, Leal-Noval SR, Rincon-Ferrari MD, Muñoz-Sanchez MA. Monitorizacion de la presión tisular de oxigeno (PtiO2) en la hipoxia cerebral: aproximación diagnostica y terapeutica. Med Intensiva. 2008;32:81–90.

    Article  CAS  PubMed  Google Scholar 

  53. Coles JP, Fryer TD, Smielewski PS, et al. Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab. 2004;24:202–11.

    Article  PubMed  Google Scholar 

  54. Menon DK, Coles JP, Gupta AK, Fryer TD, Smielewski P, Chatfield DA, Aigbirhio F, et al. Diffusion limited oxygen delivery following head injury. Crit Care Med. 2004;32:1384–90.

    Article  PubMed  Google Scholar 

  55. Cooper PR. Post-traumatic intracranial mass lesions. In: Cooper PR, editor. Head injury. 3rd ed. Baltimore: Williams & Wilkins; 1993. p. 275–331.

    Google Scholar 

  56. Houseman C, Belverud S, Narayan R. Closed head injury. In: Ellenbogen R, Abdulrauf S, editors. Principles of neurological surgery. Philadelphia: Saunders Elsevier; 2012. p. 325–47.

    Chapter  Google Scholar 

  57. Alahmadi H, Vachhrajani S, Cusimano MD. The natural history of brain contusion: an analysis of radiological and clinical progression. J Neurosurg. 2010;112:1139–45.

    Article  PubMed  Google Scholar 

  58. Ragaisis V. Brain contusion: morphology, pathogenesis and treatment. Medicina 2002;38:243–9. (http//www.medicina.kmu.lt).

  59. Kurland D, Hong C, Aarabi B, Gerzanich V, Simard M. Hemorrhagic progression of a contusion after traumatic brain injury: a review. J Neurorauma. 2012;29:19–31.

    Article  Google Scholar 

  60. Wu HM, Huang SC, Vespa P, Hovda DA, Bergsneider M. Redefining the pericontusional penumbra following traumatic brain injury: evidence od deteriorating metabolic derangements based on positron emission tomography. J Neurotrauma. 2013;30:352–60.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kawamata T, Mori T, Sato S, Katayama Y. Tissue hyperosmolality and brain edema in cerebral contusion. Neurosurg Focus. 2007;22(5):E5 1–7.

    Article  Google Scholar 

  62. McLaughlin MR, Marion DW. Cerebral blood flow and vasoresponsivity within and around cerebral contusions. J Neurosurg. 1996;85:871–6.

    Article  CAS  PubMed  Google Scholar 

  63. Soustiel JF, Mahamid E, Goldsher D, Zaaroor M. Perfusion-CT for early assessment of traumatic cerebral contusions. Neuroradiology. 2008;50:189–96.

    Article  PubMed  Google Scholar 

  64. Andrews BT, Chiles BW, Olsen WL, Pitts LH. The effect of intracerebral hematoma location on the risk of brainstem compression and on clinical outcome. J Neurosurg. 1988;69:518–22.

    Article  CAS  PubMed  Google Scholar 

  65. Lee TT, Villanueva PA. Orbital-frontal delayed hemorrhagic contusions: clinical course and neurosurgical treatment protocol. Surg Neurol. 1997;48:333–7.

    Article  CAS  PubMed  Google Scholar 

  66. Saatman KE, Duhaime AC, Bullock R, Maas AIR, Valadka A, Manley GT, Workshop Scientific Team and Advisory Panel Members. Classification of traumatic brain injury for targeted therapies. J Neurotrauma. 2008;25:719–38.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bullock RM, Chesnut R, Ghajar J, Gordon D, Hartl R, Newell DW, et al. Surgical management of traumatic parenchymal lesions. Neurosurgery. 2006;58:S2-25–46.

    Google Scholar 

  68. Maxwell WL, MacKinnon MA, Stewart JE, et al. Stereology of cerebral cortex after traumatic brain injury matched to the glasgow outcome score. Brain. 2010;133:139–60.

    Article  PubMed  Google Scholar 

  69. Sanjith S. Traumatic axonal injury in mild to moderate head injury—an illustrated review. Indian J Neurotrauma. 2011;8:71–6.

    Article  Google Scholar 

  70. Omalu B, Bailes J, Hamilton RL, Kamboh MI, Hammers J, Case M, Fitzsimmons R. Emerging hystomorphologic phenotypes of chronic traumatic encephalopathy in American athletes. Neurosurgery. 2011;69:173–83.

    Article  PubMed  Google Scholar 

  71. Blatter DD, Gale SD, et al. Magnetic Resonance based brain and CSF measurement after traumatic brain injury: correlation with neuropsychological outcome. AJNR. 1997;18:1–10.

    CAS  PubMed  Google Scholar 

  72. MacKenzie JD, Siddiqui F, Babb JS, et al. Brain atrophy in mild or moderate traumatic brain injury: a longitudinal quantitative analysis. AJNR. 2002;23:1509–15.

    PubMed  Google Scholar 

  73. Chen H, Guo Y, Chen SW, et al. progressive epidural hematoma in patients with head trauma: incidence, outcome, and risk factors. Emerg Med Int., 2012. doi:10.1155/2012/134905.

  74. Jamjoom A, Cummins B, Jamjoom ZA. Clinical characteristics of traumatic extradural hematoma: a comparison between children and adults. Neurosurg Rev. 1994;17:277–81.

    Article  CAS  PubMed  Google Scholar 

  75. Cheung PS, Lam JM, Yeung JH, Graham CA, Rainer TH. Outcome of traumatic extradural haematoma in Hong Kong. Injury. 2007;38:76–80.

    Article  PubMed  Google Scholar 

  76. Yilmazlar S, Kocaeli H, Dogan S, Abas F, Aksoy K, Korfali E, Doygun M. Traumatic epidural haematomas of nonarterial origin: analysis of 30 consecutive cases. Acta Neurochir (Wien). 2005;147:1241–8.

    Article  CAS  Google Scholar 

  77. Walcott BP, Khanna A, Kwon CS, Phillips HW, Nahed BV, Coumans JV. Time interval to surgery and outcomes following the surgical treatment of acute traumatic subdural hematoma. J Clin Neurosci. 2014;21:2107–11.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ryan CG, Thompson RE, Temkin NR, Crane PK, Ellenbogen RG, Elmore JG. Acute traumatic subdural hematoma: current mortality and functional outcomes in adult patients at a Level I trauma center. J Trauma Acute Care Surg. 2012;73:1348–54.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wilberger JE Jr, Harris M, Diamond DL. Acute subdural hematoma: morbidity, mortality, and operative timing. J Neurosurg. 1991;74:212–8.

    Article  PubMed  Google Scholar 

  80. Grandhi R, Bonfield CM, Newman WC, Okonkwo DO. Surgical management of traumatic brain injury: a review of guidelines, pathophysiology, neurophysiology, outcomes, and controversies. J Neurosurg Sci. 2014;58:249–59.

    CAS  PubMed  Google Scholar 

  81. Mathew P, Oluoch-Olunya DL, Condon BR, Bullock R. Management of the conscious patient with acute subdural hematoma: outcome with initial conservative treatment. Acta Neurochir (Wien). 1993;121:100–8.

    Article  CAS  Google Scholar 

  82. Eisenberg HM, Gary HE Jr, Aldrich EF, Saydjari C, Turner B, Foulkes MA, Jane JA, Marmarou A, Marshall LF, Young HF. Initial CT findings in 753 patients with severe head injury: a report from the NIH traumatic coma data bank. J Neurosurg. 1990;73:688–98.

    Article  CAS  PubMed  Google Scholar 

  83. Marshall LF, Marshall SB, Klauber MR, van Berkum Clark M. A new classification of head injury based on computerized tomography. J Neurosurg. 1991;75(Suppl):S14–20.

    Google Scholar 

  84. Narayan RK, Greenberg RP, Miller JD, Enas GG, Choi SC, Kishore PR, Selhorst JB, Lutz HA III, Becker DP. Improved confidence of outcome prediction in severe head injury: a comparative analysis of the clinical examination, multimodality evoked potentials, CT scanning, and intracranial pressure. J Neurosurg. 1981;54:751–62.

    Article  CAS  PubMed  Google Scholar 

  85. Servadei FD, Murray GD, Key P, Teasdale GM, Dearden M, Iannotti F, The European Brain Injury Consortium, et al. The value of the “worst” computed tomographic scan in clinical studies of moderate and severe head injury. Neurosurgery. 2000;46:70–5.

    Article  CAS  PubMed  Google Scholar 

  86. Maas AI, Hukkelhoven CW, Marshall LF, Steyerberg EW. Prediction of outcome in traumatic brain injury with computed tomographic characteristics: a comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery. 2005;57:1173–82 discussion 1173–82.

    Article  PubMed  Google Scholar 

  87. Chieragato A, Fainardi E, Morselli-Labate AM, Antonelli V, Compagnone C, Targa L, Kraus J, Servadei F. Factors associated with neurological outcome and lesion progression in traumatic subarachnoid hemorrhage patients. Neurosurgery. 2005;56:671–80.

    Article  Google Scholar 

  88. Quílez ME, López-Aguilar J, Blanch L. Organ crosstalk during acute lung injury, acute respiratory distress syndrome, and mechanical ventilation. Curr Opin Crit Care. 2012;18:23–8.

    Article  PubMed  Google Scholar 

  89. Mazzeo AT, Fanelli V, Mascia L. Brain-lung crosstalk in critical care: how protective mechanical ventilation can affect the brain homeostasis. Minerva Anesthesiol. 2013;79:299–309.

    CAS  Google Scholar 

  90. Lauerman MH, Stein DM. Multicompartment management of patients with severe traumatic brain injury. Curr Opin Anaesthesiol. 2014;27:219–24.

    Article  PubMed  Google Scholar 

  91. Reilly PL, Graham DI, Adams JH, Jennett B. Patients with head injury who talk and die. Lancet. 1975;2:375–7.

    Article  CAS  PubMed  Google Scholar 

  92. Goldschlager T, Rosenfeld JV, Winter CD. ‘Talk and die’ patients presenting to a major trauma centre over a 10 year period: a critical review. J Clin Neurosci. 2007;14:618–23.

    Article  PubMed  Google Scholar 

  93. Marshall LF, Toole BM, Bowers SA. The national traumatic coma data bank. Part 2: patients who talk and deteriorate: implications for treatment. J Neurosurg. 1983;59:285–8.

    Article  CAS  PubMed  Google Scholar 

  94. Rockswold GL, Leonard PR, Nagib MG. Analysis of management in thirty-three closed head injury patients who ‘‘talked and deteriorated’’. Neurosurgery. 1987;21:51–5.

    Article  CAS  PubMed  Google Scholar 

  95. Davis DP, Kene M, Vilke GM, et al. Head-injured patients who ‘‘talk and die’’: the San Diego perspective. J Trauma. 2007;62:277–81.

    Article  PubMed  Google Scholar 

  96. ATLS®. Advanced Trauma Life Support. American College of Surgeons. 8th edition. Chicago. 2008.

  97. Godoy DA, Piñero GR, Videtta W. Injuria cerebral aguda. Abordaje diagnostico-terapéutico inicial. En Protocolos en Emergencias y Urgencias. Lizardi Pedro. Editorial Manual Moderno. México, 2010, capitulo 3, pp. 15–20.

  98. Harris T, Davenport R, Hurst T, Jones J. Improving outcome in severe trauma: trauma systems and initial management: intubation, ventilation and resuscitation. Postgrad Med J. 2012;88:588–94.

    Article  PubMed  Google Scholar 

  99. Bouzat P, Francony G, Declety P, Genty C, Kaddour A, Bessou P, et al. Transcranial Doppler to screen on admission patients with mild to moderate traumatic brain injury. Neurosurgery. 2011;68:1603–10.

    Article  PubMed  Google Scholar 

  100. Jaffres P, Brun J, Declety P, Bosson JL, Fauvage B, Schleiermacher A, et al. Transcranial Doppler to detect on admission patients at risk for neurological deterioration following mild and moderate brain trauma. Intensive Care Med. 2005;31:785–90.

    Article  PubMed  Google Scholar 

  101. Roozenbeek B, Lingsma HF, Lecky FE, Lu J, Weir J, Butcher I, McHugh GS, Murray GD, Perel P, Maas AI, Steyerberg EW, International Mission on Prognosis Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) Study Group, Corticosteroid Randomisation After Significant Head Injury (CRASH) Trial Collaborators, Trauma Audit and Research Network (TARN). Prediction of outcome after moderate and severe traumatic brain injury: external validation of the International Mission on Prognosis and Analysis of Clinical Trials (IMPACT) and corticoid randomisation after significant head injury (CRASH) prognostic models. Crit Care Med. 2012;40:1609–17.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lingsma H, Andriessen TM, Haitsema I, Horn J, van der Naalt J, Franschman G, Maas AI, Vos PE, Steyerberg EW. Prognosis in moderate and severe traumatic brain injury: external validation of the IMPACT models and the role of extracranial injuries. J Trauma Acute Care Surg. 2013;74:639–46.

    Article  PubMed  Google Scholar 

  103. Mercier E, Boutin A, Lauzier F, Fergusson DA, Simard JF, Zarychanski R, et al. Predictive value of S-100β protein for prognosis in patients with moderate and severe traumatic brain injury: systematic review and meta-analysis. BMJ. 2013;4(346):f1757.

    Article  Google Scholar 

  104. Poca MA, Sauquillo J, Baguena M, et al. Incidence of intracranial hypertension after severe head injury: a prospective study using the Traumatic Coma Data Bank classification. Acta Neurochir Suppl (Wien). 1998;71:27–30.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Agustín Godoy.

Ethics declarations

Conflicts of interest

None for all authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godoy, D.A., Rubiano, A., Rabinstein, A.A. et al. Moderate Traumatic Brain Injury: The Grey Zone of Neurotrauma. Neurocrit Care 25, 306–319 (2016). https://doi.org/10.1007/s12028-016-0253-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-016-0253-y

Keywords

Navigation