Skip to main content

Advertisement

Log in

The HEP Score: A Nomogram-Derived Hematoma Expansion Prediction Scale

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Identification of intracerebral hemorrhage (ICH) patients at risk of substantial hematoma expansion (SHE) could facilitate the selection of candidates likely to benefit from therapies aiming to minimize ICH growth. We aimed to develop a grading tool that can be quickly used during the hyperacute phase to predict the risk of SHE.

Methods

We reviewed data from 237 spontaneous ICH patients who had baseline head CT scan within 12 h of symptom onset and follow-up CT during the following 72 h. We performed logistic regression analyses to determine the predictors of SHE (defined as an absolute increase in ICH volume >6 ml or an increase >33 % on follow-up CT). We identified 6 predictors; each was assigned a point in the graphic interface of a nomogram which was used to construct a scoring system—The Hematoma Expansion Prediction (HEP) Score, varying from 0 to 18 points. We evaluated the ability of the model to predict the probability of SHE using c-statistics.

Results

SHE occurred in 74 patients (31.2 %). The final model to predict SHE included 6 variables: time from onset to baseline CT (<3 vs. 3–12 h), history of dementia, current smoking, antiplatelet use, Glasgow Comma Scale score, and the presence of subarachnoid hemorrhage on baseline scan. The model had satisfactory discrimination ability with a bootstrap corrected c-index of 0.76 (95 % CI 0.69–0.83) and good calibration. Patients with a total HEP score >3 were at greatest risk for SHE.

Conclusions

We developed and internally validated a novel nomogram and an easy to use score which accurately predict the probability of SHE based on six easily obtainable parameters. This could be useful for treatment decision and stratification. External prospective validation of the HEP score is warranted before its application to other populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Delcourt C, Huang Y, Arima H, INTERACT1 Investigators, et al. Hematoma growth and outcomes in intracerebral hemorrhage: the INTERACT1 study. Neurology. 2012;79:314–9.

    Article  PubMed  Google Scholar 

  2. Vermeer SE, Algra A, Franke CL, Koudstaal PJ, Rinkel GJ. Long-term prognosis after recovery from primary intracerebral hemorrhage. Neurology. 2002;59:205–9.

    Article  CAS  PubMed  Google Scholar 

  3. Brott T, Broderick J, Kothari R, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke. 1997;28:1–5.

    Article  CAS  PubMed  Google Scholar 

  4. Leira R, Dávalos A, Silva Y, et al. Stroke Project, Cerebrovascular Diseases Group of the Spanish Neurological Society. Early neurologic deterioration in intracerebral hemorrhage: predictors and associated factors. Neurology. 2004;63:461–7.

    Article  CAS  PubMed  Google Scholar 

  5. Mayer SA, Brun NC, Begtrup K, Recombinant Activated Factor VII Intracerebral Hemorrhage Trial Investigators, et al. Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2005;352:777–85.

    Article  CAS  PubMed  Google Scholar 

  6. Mayer SA, Brun NC, Begtrup K, FAST Trial Investigators, et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2008;358:2127–37.

    Article  CAS  PubMed  Google Scholar 

  7. Goldstein JN, Fazen LE, Snider R, et al. Contrast extravasation on CT angiography predicts hematoma expansion in intracerebral hemorrhage. Neurology. 2007;68:889–94.

    Article  CAS  PubMed  Google Scholar 

  8. Demchuk AM, Dowlatshahi D, Rodriguez-Luna D, et al. PREDICT/Sunnybrook ICH CTA study group. Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study. Lancet Neurol. 2012;11:307–14.

    Article  PubMed  Google Scholar 

  9. Brouwers HB, Chang Y, Falcone GJ, et al. Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol. 2014;71:158–64.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a nomogram for cancer prognosis. J Clin Oncol. 2008;26:1364–70.

    Article  PubMed  Google Scholar 

  11. Kattan MW. Nomograms are superior to staging and risk grouping systems for identifying high-risk patients: preoperative application in prostate cancer. Curr Opin Urol. 2003;13:111–6.

    Article  PubMed  Google Scholar 

  12. Shariat SF, Karakiewicz PI, Suardi N, Kattan MW. Comparison of nomograms with other methods for predicting outcomes in prostate cancer: a critical analysis of the literature. Clin Cancer Res. 2008;14:4400–7.

    Article  CAS  PubMed  Google Scholar 

  13. Toyoda K, Okada Y, Minematsu K, et al. Antiplatelet therapy contributes to acute deterioration of intracerebral hemorrhage. Neurology. 2005;65:1000–4.

    Article  CAS  PubMed  Google Scholar 

  14. Kazui S, Naritomi H, Yamamoto H, Sawada T, Yamaguchi T. Enlargement of spontaneous intracerebral hemorrhage. Incidence and time course. Stroke. 1996;27:1783–7.

    Article  CAS  PubMed  Google Scholar 

  15. Hussein HM, Tariq NA, Palesch YY, Qureshi AI, ATACH Investigators. Reliability of hematoma volume measurement at local sites in a multicenter acute intracerebral hemorrhage clinical trial. Stroke. 2013;44:237–9.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Romero JM, Brouwers HB, Lu J, et al. Prospective validation of the computed tomographic angiography spot sign score for intracerebral hemorrhage. Stroke. 2013;44:3097–102.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Brouwers HB, Biffi A, Ayres AM, et al. Apolipoprotein E genotype predicts hematoma expansion in lobar intracerebral hemorrhage. Stroke. 2012;43:1490–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Barras CD, Tress BM, Christensen S, Recombinant Activated Factor VII Intracerebral Hemorrhage Trial Investigators, et al. Density and shape as CT predictors of intracerebral hemorrhage growth. Stroke. 2009;40:1325–31.

    Article  PubMed  Google Scholar 

  19. Dowlatshahi D, Smith EE, Flaherty ML, Ali M, Lyden P, Demchuk AM, VISTA Collaborators. Small intracerebral haemorrhages are associated with less haematoma expansion and better outcomes. Int J Stroke. 2011;6:201–6.

    Article  PubMed  Google Scholar 

  20. Cucchiara B, Messe S, Sansing L, Kasner S, Lyden P, CHANT Investigators. Hematoma growth in oral anticoagulant related intracerebral hemorrhage. Stroke. 2008;39:2993–6.

    Article  CAS  PubMed  Google Scholar 

  21. Broderick JP, Diringer MN, Hill MD, Recombinant Activated Factor VII Intracerebral Hemorrhage Trial Investigators, et al. Determinants of intracerebral hemorrhage growth: an exploratory analysis. Stroke. 2007;38:1072–5.

    Article  CAS  PubMed  Google Scholar 

  22. Maruishi M, Shima T, Okada Y, Nishida M, Yamane K. Involvement of fluctuating high blood pressure in the enlargement of spontaneous intracerebral hematoma. Neurol Med Chir (Tokyo). 2001;41:300–4.

    Article  CAS  Google Scholar 

  23. Fujii Y, Takeuchi S, Sasaki O, Minakawa T, Tanaka R. Multivariate analysis of predictors of hematoma enlargement in spontaneous intracerebral hemorrhage. Stroke. 1998;29:1160–6.

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez-Luna D, Piñeiro S, Rubiera M, et al. Impact of blood pressure changes and course on hematoma growth in acute intracerebral hemorrhage. Eur J Neurol. 2013;20:1277–83.

    Article  CAS  PubMed  Google Scholar 

  25. Takeda R, Ogura T, Ooigawa H, et al. A practical prediction model for early hematoma expansion in spontaneous deep ganglionic intracerebral hemorrhage. Clin Neurol Neurosurg. 2013;115:1028–31.

    Article  PubMed  Google Scholar 

  26. Brouwers HB, Falcone GJ, McNamara KA, et al. CTA spot sign predicts hematoma expansion in patients with delayed presentation after intracerebral hemorrhage. Neurocrit Care. 2012;17:421–8.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Rodriguez-Luna D, Rubiera M, Ribo M, et al. Serum low-density lipoprotein cholesterol level predicts hematoma growth and clinical outcome after acute intracerebral hemorrhage. Stroke. 2011;42:2447–52.

    Article  CAS  PubMed  Google Scholar 

  28. Kuramatsu JB, Mauer C, Kiphuth IC, et al. Reported antiplatelet use influences long-term outcome independently in deep intracerebral hemorrhage. Neurosurgery. 2012;70:342–50.

    Article  PubMed  Google Scholar 

  29. Silva Y, Leira R, Tejada J, Lainez JM, Castillo J, Dávalos A, Stroke Project, Cerebrovascular Diseases Group of the Spanish Neurological Society. Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage. Stroke. 2005;36:86–91.

    Article  PubMed  Google Scholar 

  30. Rincon F, Lyden P, Mayer SA. Relationship between temperature, hematoma growth, and functional outcome after intracerebral hemorrhage. Neurocrit Care. 2013;18:45–53.

    Article  PubMed  Google Scholar 

  31. Yildiz OK, Arsava EM, Akpinar E, Topcuoglu MA. Previous antiplatelet use is associated with hematoma expansion in patients with spontaneous intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2012;21:760–6.

    Article  PubMed  Google Scholar 

  32. Kazui S, Minematsu K, Yamamoto H, Sawada T, Yamaguchi T. Predisposing factors to enlargement of spontaneous intracerebral hematoma. Stroke. 1997;28:2370–5.

    Article  CAS  PubMed  Google Scholar 

  33. Becker KJ, Baxter AB, Bybee HM, Tirschwell DL, Abouelsaad T, Cohen WA. Extravasation of radiographic contrast is an independent predictor of death in primary intracerebral hemorrhage. Stroke. 1999;30:2025–32.

    Article  CAS  PubMed  Google Scholar 

  34. Lim JK, Hwang HS, Cho BM, et al. Multivariate analysis of risk factors of hematoma expansion in spontaneous intracerebral hemorrhage. Surg Neurol. 2008;69:40–5.

    Article  PubMed  Google Scholar 

  35. Huynh TJ, Demchuk AM, Dowlatshahi D, et al. PREDICT/Sunnybrook ICH CTA Study Group. Spot sign number is the most important spot sign characteristic for predicting hematoma expansion using first-pass computed tomography angiography: analysis from the PREDICT study. Stroke. 2013;44:972–7.

    Article  PubMed  Google Scholar 

  36. Sullivan L, Massaro J, D’Agostino R. Presentation of multivariate data for clinical use: the Framingham Study risk score functions. Stat Med. 2004;23:1631–60.

    Article  PubMed  Google Scholar 

  37. Lou M, Al-Hazzani A, Goddeau RP Jr, Novak V, Selim M. Relationship between white-matter hyperintensities and hematoma volume and growth in patients with intracerebral hemorrhage. Stroke. 2010;41:34–40.

    Article  PubMed  Google Scholar 

  38. Martí-Fàbregas J, Delgado-Mederos R, Granell E, RENEVAS group (Stroke Research Network, RETICS, Instituto de Salud Carlos III), et al. Microbleed burden and hematoma expansion in acute intracerebral hemorrhage. Eur Neurol. 2013;70:175–8.

    Article  PubMed  Google Scholar 

  39. Feigin VL, Rinkel GJ, Lawes CM, et al. Risk factors for subarachnoid hemorrhage: an updated systematic review of epidemiological studies. Stroke. 2005;36:2773–80.

    Article  PubMed  Google Scholar 

  40. Kurth T, Kase CS, Berger K, Schaeffner ES, Buring JE, Gaziano JM. Smoking and the risk of hemorrhagic stroke in men. Stroke. 2003;34:1151–5.

    Article  PubMed  Google Scholar 

  41. Finelli PF. Cerebral amyloid angiopathy as cause of convexity SAH in elderly. Neurologist. 2010;16:37–40.

    Article  PubMed  Google Scholar 

  42. Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol. 2011;70:871–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Yao is supported by a grant from a scholarship from Renji Hospital in Shanghai, China; Dr. Selim is partly supported by the NIH/NINDS (U01 NS074425).

Disclosures

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy Selim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 477 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, X., Xu, Y., Siwila-Sackman, E. et al. The HEP Score: A Nomogram-Derived Hematoma Expansion Prediction Scale. Neurocrit Care 23, 179–187 (2015). https://doi.org/10.1007/s12028-015-0147-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-015-0147-4

Keywords

Navigation