Skip to main content

Advertisement

Log in

Thromboelastography Defines Late Hypercoagulability After TBI: A Pilot Study

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Introduction

Traumatic brain injury (TBI) is associated with a hypercoagulable state, the mechanism and duration of which remain unclear. We sought to determine whether thromboelastography (TEG) analysis could identify the hypercoagulable state after TBI, as defined by elevations in maximal amplitude (MA), thrombus generation (TG), G value (G), and alpha angle (αA).

Methods

Patients with moderate–severe TBI, defined primarily as a GCS <12, admitted between 1/2012 and 8/2013 were eligible for enrolment in this prospective cohort study. TEG profiles were obtained between 0–24 h (T1), 24–48 h (T2), 48–72 h (T3), 72–96 h (T4), and 96–120 h (T5) after admission. Early TEG was defined as 0–48 h, and late TEG was defined as >48 h.

Results

Twenty five patients (80 % men) and 7 age- and sex-matched control subjects were studied. Median age was 38 years (range 18–85). Early MA was [63.6 mm (60.5, 67.4)] versus late MA [69.9 mm (65.2,73.9); p = 0.02], early TG was [763.3 mm/min (712.8, 816.2)] versus late TG [835.9 mm/min (791.2,888.3); p = 0.02], and early G was [8.8 d/cm2 (7.7,10.4)] versus late G [11.6 d/cm2 (9.4,14.1); p = 0.02]. Study patients had higher MA (p = 0.02), TG (p = 0.03), and G (p = 0.02) values at T5 compared to controls. There was a linear increase per day of MA by 2.6 mm (p = 0.001), TG 31.9 mm/min (p ≤ 0.001), and G value by 1.3 d/cm2 (p ≤ 0.001) when clustered by pairs in regression analysis. Lower MA values trended toward home discharge (p = 0.08).

Conclusion

The data suggest a progressive and delayed hypercoagulable state observed days after initial TBI. The hypercoagulable state may reflect excess platelet activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Coronado VG, Xu L, Basavaraju SV, McGuire LC, Wald MM, Faul MD, Guzman BR, Hemphill JD. Surveillance for traumatic brain injury-related deaths: United States, 1997–2007. MMWR Surveill Summ. 2011;60(5):1–32.

    PubMed  Google Scholar 

  2. Shackford SR, Mackersie RC, Holbrook TL, Davis JW, Hollingsworth-Fridlund P, Hoyt DB, Wolf PL. The epidemiology of traumatic death. A population-based analysis. Arch Surg. 1993;128(5):571–5.

    Article  CAS  PubMed  Google Scholar 

  3. Lustenberger T, Relja B, Puttkammer B, Gabazza EC, Geiger E, Takei Y, Morser J, Marzi I. Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) levels are decreased in patients with trauma-induced coagulopathy. Thromb Res. 2013;131(1):e26–30.

    Article  CAS  PubMed  Google Scholar 

  4. Talving P, Benfield R, Hadjizacharia P, Inaba K, Chan LS, Demetriades D. Coagulopathy in severe traumatic brain injury: a prospective study. J Trauma. 2009;66(1):55–61 discussion 61-52.

    Article  PubMed  Google Scholar 

  5. Laroche M, Kutcher ME, Huang MC, Cohen MJ, Manley GT. Coagulopathy after traumatic brain injury. Neurosurgery. 2012;70(6):1334–45.

    Article  PubMed  Google Scholar 

  6. Lustenberger T, Talving P, Kobayashi L, Inaba K, Lam L, Plurad D, Demetriades D. Time course of coagulopathy in isolated severe traumatic brain injury. Injury. 2010;41(9):924–8.

    Article  PubMed  Google Scholar 

  7. Maegele M. Coagulopathy after traumatic brain injury: incidence, pathogenesis, and treatment options. Transfusion. 2013;53(Suppl 1):28S–37S.

    Article  PubMed  Google Scholar 

  8. Kunio NR, Differding JA, Watson KM, Stucke RS, Schreiber MA. Thrombelastography-identified coagulopathy is associated with increased morbidity and mortality after traumatic brain injury. Am J Surg. 2012;203(5):584–8.

    Article  PubMed  Google Scholar 

  9. Stein SC, Spettell C, Young G, Ross SE. Delayed and progressive brain injury in closed-head trauma: radiological demonstration. Neurosurgery. 1993;32(1):25–30 discussion 30-21.

    Article  CAS  PubMed  Google Scholar 

  10. Harhangi BS, Kompanje EJ, Leebeek FW, Maas AI. Coagulation disorders after traumatic brain injury. Acta Neurochir (Wien). 2008;150(2):165–75 discussion 175.

    Article  CAS  Google Scholar 

  11. Stein SC, Smith DH. Coagulopathy in traumatic brain injury. Neurocrit Care. 2004;1(4):479–88.

    Article  PubMed  Google Scholar 

  12. Cohen MJ, Brohi K, Ganter MT, Manley GT, Mackersie RC, Pittet JF. Early coagulopathy after traumatic brain injury: the role of hypoperfusion and the protein C pathway. J Trauma. 2007;63(6):1254–61 discussion 1261-1252.

    Article  CAS  PubMed  Google Scholar 

  13. Stein SC, Graham DI, Chen XH, Smith DH. Association between intravascular microthrombosis and cerebral ischemia in traumatic brain injury. Neurosurgery. 2004;54(3):687–91 discussion 691.

    Article  PubMed  Google Scholar 

  14. Graham DI, Adams JH. Ischaemic brain damage in fatal head injuries. Lancet. 1971;1(7693):265–6.

    Article  CAS  PubMed  Google Scholar 

  15. Graham DI, Adams JH, Doyle D. Ischaemic brain damage in fatal non-missile head injuries. J Neurol Sci. 1978;39(2–3):213–34.

    Article  CAS  PubMed  Google Scholar 

  16. Knudson MM, Ikossi DG, Khaw L, Morabito D, Speetzen LS. Thromboembolism after trauma: an analysis of 1602 episodes from the American College of Surgeons National Trauma Data Bank. Ann Surg. 2004;240(3):490–6 discussion 496-498.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Phelan HA. Pharmacologic venous thromboembolism prophylaxis after traumatic brain injury: a critical literature review. J Neurotrauma. 2012;29(10):1821–8.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Rogers FB. Venous thromboembolism in trauma patients: a review. Surgery. 2001;130(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez E, Pieracci FM, Moore EE, Kashuk JL. Coagulation abnormalities in the trauma patient: the role of point-of-care thromboelastography. Semin Thromb Hemost. 2010;36(7):723–37.

    Article  PubMed  Google Scholar 

  20. Windelov NA, Welling KL, Ostrowski SR, Johansson PI. The prognostic value of thrombelastography in identifying neurosurgical patients with worse prognosis. Blood Coagul Fibrinolysis. 2011;22(5):416–9.

    Article  PubMed  Google Scholar 

  21. Cotton BA, Minei KM, Radwan ZA, Matijevic N, Pivalizza E, Podbielski J, Wade CE, Kozar RA, Holcomb JB. Admission rapid thrombelastography predicts development of pulmonary embolism in trauma patients. J Trauma Acute Care Surg. 2012;72(6):1470–5 discussion 1475-1477.

    Article  PubMed  Google Scholar 

  22. Branco BC, Inaba K, Ives C, Okoye O, Shulman I, David JS, Schochl H, Rhee P, Demetriades D. Thromboelastogram evaluation of the impact of hypercoagulability in trauma patients. Shock. 2013;41(3):200–7.

    Article  Google Scholar 

  23. Kashuk JL, Moore EE, Sabel A, Barnett C, Haenel J, Le T, Pezold M, Lawrence J, Biffl WL, Cothren CC, et al. Rapid thrombelastography (r-TEG) identifies hypercoagulability and predicts thromboembolic events in surgical patients. Surgery. 2009;146(4):764–72 discussion 772-764.

    Article  PubMed  Google Scholar 

  24. Kashuk JL, Moore EE, Wohlauer M, Johnson JL, Pezold M, Lawrence J, Biffl WL, Burlew CC, Barnett C, Sawyer M, et al. Initial experiences with point-of-care rapid thrombelastography for management of life-threatening postinjury coagulopathy. Transfusion. 2012;52(1):23–33.

    Article  PubMed  Google Scholar 

  25. Gonzalez E, Kashuk JL, Moore EE, Silliman CC. Differentiation of enzymatic from platelet hypercoagulability using the novel thrombelastography parameter delta (delta). The Journal of surgical research. 2010;163(1):96–101.

    Article  CAS  PubMed  Google Scholar 

  26. Nielsen VG. Beyond cell based models of coagulation: analyses of coagulation with clot “lifespan” resistance-time relationships. Thromb Res. 2008;122(2):145–52.

    Article  CAS  PubMed  Google Scholar 

  27. Sorensen B, Johansen P, Christiansen K, Woelke M, Ingerslev J. Whole blood coagulation thrombelastographic profiles employing minimal tissue factor activation. J Thromb Haemost. 2003;1(3):551–8.

    Article  CAS  PubMed  Google Scholar 

  28. Rivard GE, Brummel-Ziedins KE, Mann KG, Fan L, Hofer A, Cohen E. Evaluation of the profile of thrombin generation during the process of whole blood clotting as assessed by thrombelastography. J Thromb Haemost. 2005;3(9):2039–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Rating the severity of tissue damage. I. The abbreviated scale. JAMA 1971, 215(2):277–280

  30. Marshall LF, Marshall SB, Klauber MR, Clark MV, Eisenberg HM, Jane JA, Luerssen TG, Marmarou A, Foulkes MA. A new classification of head-injury based on computerized-tomography. J Neurosurg. 1991;75:S14–20.

    Google Scholar 

  31. Maas AI, Hukkelhoven CW, Marshall LF, Steyerberg EW. Prediction of outcome in traumatic brain injury with computed tomographic characteristics: a comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery. 2005;57(6):1173–82 discussion 1173-1182.

    Article  PubMed  Google Scholar 

  32. Haemonetics TBMC: Modules 1–6. In: Basic clinical training. Haemonetics; 2008–2010

  33. Abrahams JM, Torchia MB, McGarvey M, Putt M, Baranov D, Sinson GP. Perioperative assessment of coagulability in neurosurgical patients using thromboelastography. Surg Neurol. 2002;58(1):5–11 discussion 11-12.

    Article  PubMed  Google Scholar 

  34. McCrath DJ, Cerboni E, Frumento RJ, Hirsh AL, Bennett-Guerrero E. Thromboelastography maximum amplitude predicts postoperative thrombotic complications including myocardial infarction. Anesth Analg. 2005;100(6):1576–83.

    Article  PubMed  Google Scholar 

  35. Gurbel PA, Bliden KP, Guyer K, Cho PW, Zaman KA, Kreutz RP, Bassi AK, Tantry US. Platelet reactivity in patients and recurrent events post-stenting: results of the PREPARE POST-STENTING Study. J Am Coll Cardiol. 2005;46(10):1820–6.

    Article  CAS  PubMed  Google Scholar 

  36. Reiff DA, Haricharan RN, Bullington NM, Griffin RL, McGwin G Jr, Rue LW 3rd. Traumatic brain injury is associated with the development of deep vein thrombosis independent of pharmacological prophylaxis. J Trauma. 2009;66(5):1436–40.

    Article  CAS  PubMed  Google Scholar 

  37. Geerts WH, Code KI, Jay RM, Chen E, Szalai JP. A prospective study of venous thromboembolism after major trauma. N Engl J Med. 1994;331(24):1601–6.

    Article  CAS  PubMed  Google Scholar 

  38. Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet JF. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg. 2007;245(5):812–8.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Brohi K, Cohen MJ, Davenport RA. Acute coagulopathy of trauma: mechanism, identification and effect. Curr Opin Crit Care. 2007;13(6):680–5.

    Article  PubMed  Google Scholar 

  40. Wafaisade A, Lefering R, Tjardes T, Wutzler S, Simanski C, Paffrath T, Fischer P, Bouillon B, Maegele M. Acute coagulopathy in isolated blunt traumatic brain injury. Neurocrit Care. 2010;12(2):211–9.

    Article  PubMed  Google Scholar 

  41. Wegner J, Popovsky MA. Clinical utility of thromboelastography: one size does not fit all. Semin Thromb Hemost. 2010;36(7):699–706.

    Article  PubMed  Google Scholar 

  42. Holcomb JB, Minei KM, Scerbo ML, Radwan ZA, Wade CE, Kozar RA, Gill BS, Albarado R, McNutt MK, Khan S, et al. Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department: experience with 1974 consecutive trauma patients. Ann Surg. 2012;256(3):476–86.

    Article  PubMed  Google Scholar 

Download references

Acknowlegments

Dr. Kumar has received research support from Haemonetics. Dr. Kasner has received grants from WL Gore, AstraZeneca, GlaxoSmithKline, and Acorda. He acts as a consultant for Merck, Novartis, Medtronic, and Boehringer Ingelheim. Dr. Grady has received Grant funding from the NIH. For the remaining authors, none were declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allie M. Massaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massaro, A.M., Doerfler, S., Nawalinski, K. et al. Thromboelastography Defines Late Hypercoagulability After TBI: A Pilot Study. Neurocrit Care 22, 45–51 (2015). https://doi.org/10.1007/s12028-014-0051-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-014-0051-3

Keywords

Navigation