Skip to main content

Advertisement

Log in

The combination of IDO and AHR blockers reduces the migration and clonogenicity of breast cancer cells

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The indoleamine-2,3-dioxygenase (IDO) enzyme causes immunosuppressive consequences in the tumor microenvironment (TME). In addition, the role of aryl hydrocarbon receptor (AHR) in the TME is under discussion. The current study evaluated the role of the IDO and AHR blockers on cell migration, clonogenic, and IDO expression of murine breast cancer cells. The cell migration and clonogenic abilities of breast cancer cells are evaluated by wound‑healing assay (cell migration assay) and Colony formation assay (clonogenic assay). Also, flow cytometry analysis was used to detect the IDO-positive breast cancer cells. The results showed that treating cells with a combination of IDO and AHR blockers dramatically reduced breast cancer cells’ migration and clonogenic capacities. Treating cells with only AHR blockade suppressed the clonogenic rate. Since both IDO and AHR are involved in their complex molecular networks, blocking both IDO and AHR might cause alterations in their molecular networks resulting in diminishing the migration and clonogenic abilities of breast cancer cells. However, further investigations are required to confirm our findings within in vivo models as a novel therapy for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

None.

Abbreviations

IDO:

Indoleamine-2,3-dioxygenase

TME:

Tumor microenvironment

AHR:

Aryl hydrocarbon receptor

Trp:

Tryptophan

IGF:

Insulin-like growth factor

1MT:

1-Methyl-DL-tryptophan

FBS:

Fetal bovine serum

STAT6:

Signal transducer and activator of transcription 6

NF-κB:

Nuclear factor kappa B

References

  1. Bray F, Laversanne M, Weiderpass E, Soerjomataram I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer. 2021;127:3029–30. https://doi.org/10.1002/cncr.33587.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48. https://doi.org/10.3322/caac.21763.

    Article  PubMed  Google Scholar 

  3. Kashyap D, Pal D, Sharma R, Garg VK, Goel N, Koundal D, Zaguia A, Koundal S, Belay A. Global increase in Breast Cancer incidence: risk factors and preventive measures. Biomed Res Int. 2022;2022:9605439. https://doi.org/10.1155/2022/9605439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Azimnasab-Sorkhabi P, Soltani-Asl M, Kfoury JR Jr., Algenstaedt P, Mehmetzade HF, Hashemi Aghdam Y. The impact of leptin and its receptor polymorphisms on type 1 Diabetes in a population of northwest Iran. Ann Hum Biol. 2022;49:317–22. https://doi.org/10.1080/03014460.2022.2134453.

    Article  PubMed  CAS  Google Scholar 

  5. Soltani Asl M, Azimnasab-Sorkhabi P, Abolfathi AA, Hashemi Aghdam Y. Identification of nucleotide polymorphism within the NeuroD1 candidate gene and its association with type 1 Diabetes susceptibility in Iranian people by polymerase chain reaction-restriction fragment length polymorphism. J Pediatr Endocrinol Metab. 2020;33:1293–7. https://doi.org/10.1515/jpem-2019-0441.

    Article  PubMed  CAS  Google Scholar 

  6. Duffy MJ, Synnott NC, Crown J. Mutant p53 as a target for cancer treatment. Eur J Cancer. 2017;83:258–65. https://doi.org/10.1016/j.ejca.2017.06.023.

    Article  PubMed  CAS  Google Scholar 

  7. Di Gregorio J, Petricca S, Iorio R, Toniato E, Flati V. Mitochondrial and metabolic alterations in cancer cells. Eur J Cell Biol. 2022;101:151225. https://doi.org/10.1016/j.ejcb.2022.151225.

    Article  PubMed  CAS  Google Scholar 

  8. Azimnasab-Sorkhabi P, Soltani-Asl M, Kfoury Junior JR. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) as an undetermined tool in Tumor cells. Hum Cell. 2023;36:1225–32. https://doi.org/10.1007/s13577-023-00893-8.

    Article  PubMed  CAS  Google Scholar 

  9. Azimnasab-Sorkhabi P, Soltani-Asl M, Yoshinaga TT, Massoco CO, Kfoury Junior JR. IDO blockade negatively regulates the CTLA-4 signaling in Breast cancer cells. Immunol Res. 2023. https://doi.org/10.1007/s12026-023-09378-0.

    Article  PubMed  Google Scholar 

  10. Ye Z, Yue L, Shi J, Shao M, Wu T. Role of IDO and TDO in cancers and related Diseases and the therapeutic implications. J Cancer. 2019;10:2771–82. https://doi.org/10.7150/jca.31727.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. van Baren N, Van den Eynde BJ. Tryptophan-degrading enzymes in tumoral immune resistance. Front Immunol. 2015;6:34. https://doi.org/10.3389/fimmu.2015.00034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Azimnasab-Sorkhabi P, Soltani-Asl M, Yoshinaga TT, Zaidan Dagli ML, Massoco CO, Kfoury Junior JR. Indoleamine-2,3 dioxygenase: a fate-changer of the Tumor microenvironment. Mol Biol Rep. 2023;50:6133–45. https://doi.org/10.1007/s11033-023-08469-3.

    Article  PubMed  CAS  Google Scholar 

  13. Trikha P, Lee DA. The role of AhR in transcriptional regulation of immune cell development and function. Biochim Biophys Acta Rev Cancer. 2020;1873:188335. https://doi.org/10.1016/j.bbcan.2019.188335.

    Article  PubMed  CAS  Google Scholar 

  14. Elson DJ, Kolluri SK. Tumor-suppressive functions of the Aryl Hydrocarbon receptor (AhR) and AhR as a therapeutic target in Cancer. Biology (Basel). 2023;12. https://doi.org/10.3390/biology12040526.

  15. Granados JC, Falah K, Koo I, Morgan EW, Perdew GH, Patterson AD, Jamshidi N, Nigam SK. AHR is a master regulator of diverse pathways in endogenous metabolism. Sci Rep. 2022;12:16625. https://doi.org/10.1038/s41598-022-20572-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Larigot L, Juricek L, Dairou J, Coumoul X. AhR signaling pathways and regulatory functions. Biochim Open. 2018;7:1–9. https://doi.org/10.1016/j.biopen.2018.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Patel RD, Murray IA, Flaveny CA, Kusnadi A, Perdew GH. Ah receptor represses acute-phase response gene expression without binding to its cognate response element. Lab Invest. 2009;89:695–707. https://doi.org/10.1038/labinvest.2009.24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Xue P, Fu J, Zhou Y. The Aryl Hydrocarbon receptor and Tumor immunity. Front Immunol. 2018;9:286. https://doi.org/10.3389/fimmu.2018.00286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Vacher S, Castagnet P, Chemlali W, Lallemand F, Meseure D, Pocard M, Bieche I, Perrot-Applanat M. High AHR expression in breast tumors correlates with expression of genes from several signaling pathways namely inflammation and endogenous tryptophan metabolism. PLoS ONE. 2018;13:e0190619. https://doi.org/10.1371/journal.pone.0190619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Murray IA, Patterson AD, Perdew GH. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer. 2014;14:801–14. https://doi.org/10.1038/nrc3846.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Opitz CA, Somarribas Patterson LF, Mohapatra SR, Dewi DL, Sadik A, Platten M, Trump S. The therapeutic potential of targeting tryptophan catabolism in cancer. Br J Cancer. 2020;122:30–44. https://doi.org/10.1038/s41416-019-0664-6.

    Article  PubMed  CAS  Google Scholar 

  22. Tomblin JK, Arthur S, Primerano DA, Chaudhry AR, Fan J, Denvir J, Salisbury TB. Aryl hydrocarbon receptor (AHR) regulation of L-Type amino acid transporter 1 (LAT-1) expression in MCF-7 and MDA-MB-231 Breast cancer cells. Biochem Pharmacol. 2016;106:94–103. https://doi.org/10.1016/j.bcp.2016.02.020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Takenaka MC, Gabriely G, Rothhammer V, Mascanfroni ID, Wheeler MA, Chao CC, Gutiérrez-Vázquez C, Kenison J, Tjon EC, Barroso A, Vandeventer T, de Lima KA, Rothweiler S, Mayo L, Ghannam S, Zandee S, Healy L, Sherr D, Farez MF, Prat A, Antel J, Reardon DA, Zhang H, Robson SC, Getz G, Weiner HL, Quintana FJ. Author correction: control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nat Neurosci. 2019;22:1533. https://doi.org/10.1038/s41593-019-0446-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Vogel CFA, Lazennec G, Kado SY, Dahlem C, He Y, Castaneda A, Ishihara Y, Vogeley C, Rossi A, Haarmann-Stemmann T, Jugan J, Mori H, Borowsky AD, La Merrill MA, Sweeney C. Targeting the Aryl hydrocarbon receptor signaling pathway in Breast Cancer Development. Front Immunol. 2021;12:625346. https://doi.org/10.3389/fimmu.2021.625346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Safe S, Zhang L. The role of the Aryl Hydrocarbon Receptor (AhR) and its ligands in Breast Cancer. Cancers (Basel). 2022;14. https://doi.org/10.3390/cancers14225574.

  26. Shi D, Wu X, Jian Y, Wang J, Huang C, Mo S, Li Y, Li F, Zhang C, Zhang D, Zhang H, Huang H, Chen X, Wang YA, Lin C, Liu G, Song L, Liao W. USP14 promotes tryptophan metabolism and immune suppression by stabilizing IDO1 in Colorectal cancer. Nat Commun. 2022;13:5644. https://doi.org/10.1038/s41467-022-33285-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, Werner ER, Werner-Felmayer G, Weiss HG, G√∂bel G, Margreiter R, K√∂nigsrainer A, Fuchs D, Amberger A. Prognostic value of indoleamine 2,3-dioxygenase expression in Colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res. 2006;12:1144–51. https://doi.org/10.1158/1078-0432.CCR-05-1966.

    Article  PubMed  CAS  Google Scholar 

  28. Thaker AI, Rao MS, Bishnupuri KS, Kerr TA, Foster L, Marinshaw JM, Newberry RD, Stenson WF, Ciorba MA. IDO1 metabolites activate β-catenin signaling to Promote Cancer cell proliferation and Colon tumorigenesis in mice. Gastroenterology. 2013;145:416–425e414. https://doi.org/10.1053/j.gastro.2013.05.002.

    Article  PubMed  CAS  Google Scholar 

  29. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, Jugold M, Guillemin GJ, Miller CL, Lutz C, Radlwimmer B, Lehmann I, von Deimling A, Wick W, Platten M. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478:197–203. https://doi.org/10.1038/nature10491.

    Article  PubMed  CAS  Google Scholar 

  30. Xue C, Li G, Zheng Q, Gu X, Shi Q, Su Y, Chu Q, Yuan X, Bao Z, Lu J, Li L. Tryptophan metabolism in health and Disease. Cell Metab. 2023;35:1304–26. https://doi.org/10.1016/j.cmet.2023.06.004.

    Article  PubMed  CAS  Google Scholar 

  31. Liu X, Zhou W, Zhang X, Ding Y, Du Q, Hu R. 1-L-MT, an IDO inhibitor, prevented colitis-associated cancer by inducing CDC20 inhibition-mediated mitotic death of colon cancer cells. Int J Cancer. 2018;143:1516–29. https://doi.org/10.1002/ijc.31417.

    Article  PubMed  CAS  Google Scholar 

  32. Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med. 2005;11:312–9. https://doi.org/10.1038/nm1196.

    Article  PubMed  CAS  Google Scholar 

  33. Jiang X, Li X, Zheng S, Du G, Ma J, Zhang L, Wang H, Tian J. Comparison study of different indoleamine-2,3 dioxygenase inhibitors from the perspective of pharmacodynamic effects. Int J Immunopathol Pharmacol. 2020;34:2058738420950584. https://doi.org/10.1177/2058738420950584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Fujiwara Y, Kato S, Nesline MK, Conroy JM, DePietro P, Pabla S, Kurzrock R. Indoleamine 2,3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treat Rev. 2022;110:102461. https://doi.org/10.1016/j.ctrv.2022.102461.

    Article  PubMed  CAS  Google Scholar 

  35. Atene CG, Fiorcari S, Mesini N, Alboni S, Martinelli S, Maccaferri M, Leonardi G, Potenza L, Luppi M, Maffei R, Marasca R. Indoleamine 2, 3-Dioxygenase 1 Mediates Survival Signals in chronic lymphocytic Leukemia via Kynurenine/Aryl hydrocarbon receptor-mediated MCL1 modulation. Front Immunol. 2022;13. https://doi.org/10.3389/fimmu.2022.832263.

  36. Zhu J, Luo L, Tian L, Yin S, Ma X, Cheng S, Tang W, Yu J, Ma W, Zhou X, Fan X, Yang X, Yan J, Xu X, Lv C, Liang H. Aryl Hydrocarbon receptor promotes IL-10 expression in inflammatory macrophages through Src-STAT3 signaling pathway. Front Immunol. 2018;9. https://doi.org/10.3389/fimmu.2018.02033.

  37. Miyake T, Miyake T, Sakaguchi M, Nankai H, Nakazawa T, Morishita R. Prevention of Asthma Exacerbation in a mouse model by simultaneous inhibition of NF-κB and STAT6 activation using a chimeric decoy strategy. Mol Ther Nucleic Acids. 2018;10:159–69. https://doi.org/10.1016/j.omtn.2017.12.005.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank BioRender.com for its services. Figure 4 was created with Biorender.com. This work was funded by FAPESP (2022/16332-1 to Jose Roberto Kfoury Junior). Also, the author thanks the National Council for the Improvement of Higher Education (CAPES) and the National Council for Scientific and Technological Development (CNPq) for the support of the scholarship.

Author information

Authors and Affiliations

Authors

Contributions

The original idea was designed by Maryam Soltaniasl, Parviz azimnasab-sorkhabi, and Jose Roberto Kfoury Junior. Material preparation, data collection, and analysis were performed by Maryam Soltaniasl and Parviz azimnasab-sorkhabi. The original draft was written by Maryam Soltani-asl, Parviz azimnasab-sorkhabi, and Túlio Teruo Yoshinaga. Critical review was performed by Maryam Soltani-asl, Parviz azimnasab-sorkhabi, Cristina de Oliveira Massoco, and Jose Roberto Kfoury Junior.

Corresponding author

Correspondence to Maryam Soltani-asl.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani-asl, M., Azimnasab-sorkhabi, P., Yoshinaga, T.T. et al. The combination of IDO and AHR blockers reduces the migration and clonogenicity of breast cancer cells. Immunol Res (2023). https://doi.org/10.1007/s12026-023-09450-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12026-023-09450-9

Keywords

Navigation