Skip to main content

Advertisement

Log in

An epicutaneous therapeutic pollen-allergen extract delivery system in an allergic rhinitis mouse model: based on allergen loading on DC-specific aptamers conjugated nanogolds

  • Research
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Background

Gold nanoparticles (GNPs) have previously been suggested as appropriate carriers for allergen-specific immunotherapy (AIT). In this study, we assessed efficacy of GNPs and dendritic cells (DC)-specific aptamer-modified GNPs (Apts-GNP) for epicutaneous immunotherapy (EPIT) in the case of pollen allergen extracts containing a variety of allergenic and non-allergenic components.

Methods

BALB/c mice were sensitized to the total protein extract of Platanus orientalis pollen and epicutaneously treated in different groups either with free P. orientalis total pollen extract, naked GNPs, total extract loaded GNPs, and total extract loaded Apts-GNPs with and without skin-penetrating peptides (SPPs). Then, the specific IgE level (sIgE), total IgE concentration (tIgE) in the serum sample, IL-4, IL-17a, IFN-γ, and IL-10 cytokine concentrations in re-stimulated splenocytes with the total extract and mixture of recombinant allergens, nasopharyngeal lavage fluid (NALF) analysis, and histopathological analysis of lung tissue were evaluated.

Results

This study indicated the total extract-loaded GNPs, especially Pla. ext (50 μg)-GNPs, significantly decreased sIgE, tIgE, IL-17a, and IL-4 concentrations, immune cells and eosinophils infiltration in NALF, and increased IL-10 and IFN-γ concentrations compared with the PBS-treated group. In addition, the histopathological analysis of lung tissue showed a significant decrease in allergic inflammation and histopathological damage. The DC-targeted group revealed the most significant improvement in allergic-related immune factors with no histopathological damage compared with the same dose without aptamer.

Conclusion

Loading total protein extract on the GNPs and the Apt-modified GNPs could be an effective approach to improve EPIT efficacy in a pollen-induced allergic mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pohlit H, Bellinghausen I, Frey H, Saloga J. Recent advances in the use of nanoparticles for allergen-specific immunotherapy. Allergy. 2017;72(10):1461–74.

    Article  CAS  PubMed  Google Scholar 

  2. Wang XY, Ma TT, Wang XY, Zhuang Y, Wang XD, Ning HY, et al. Prevalence of pollen-induced allergic rhinitis with high pollen exposure in grasslands of northern China. Allergy. 2018;73(6):1232–43.

    Article  PubMed  Google Scholar 

  3. Larsson O, Hellkvist L, Peterson-Westin U, Cardell LO. Novel strategies for the treatment of grass pollen-induced allergic rhinitis. Expert Opin Biol Ther. 2016;16(9):1143–50.

    Article  CAS  PubMed  Google Scholar 

  4. McDonell AL, Wahn U, Demuth D, Richards C, Hawes C, Andreasen JN, et al. Allergy immunotherapy prescribing trends for grass pollen-induced allergic rhinitis in Germany: a retrospective cohort analysis. Allergy Asthma Clin Immunol. 2015;11(1):1–7.

    Article  Google Scholar 

  5. Durham SR, Penagos M. Sublingual or subcutaneous immunotherapy for allergic rhinitis? J Allergy Clin Immunol. 2016;137(2):339–49. e10

    Article  PubMed  Google Scholar 

  6. Cox L, Calderon MA. Subcutaneous specific immunotherapy for seasonal allergic rhinitis: a review of treatment practices in the US and Europe. Curr Med Res Opin. 2010;26(12):2723–33.

    Article  PubMed  Google Scholar 

  7. Cox L, Nelson H, Lockey R, Calabria C, Chacko T, Finegold I, et al. Allergen immunotherapy: a practice parameter third update. J Allergy Clin Immunol. 2011;127(1):S1–S55.

    Article  PubMed  Google Scholar 

  8. Bousquet J, Lockey R, Malling H-J. Allergen immunotherapy: therapeutic vaccines for allergic diseases A WHO position paper. J Allergy Clin Immunol. 1998;102(4):558–62.

    Article  CAS  PubMed  Google Scholar 

  9. Senti G, von Moos S, Kündig TM. Epicutaneous immunotherapy for aeroallergen and food allergy. Current treatment options in allergy. 2014;1:68–78.

    Article  PubMed  Google Scholar 

  10. Senti G, von Moos S, Tay F, Graf N, Sonderegger T, Johansen P, et al. Epicutaneous allergen-specific immunotherapy ameliorates grass pollen–induced rhinoconjunctivitis: a double-blind, placebo-controlled dose escalation study. J Allergy Clin Immunol. 2012;129(1):128–35.

    Article  CAS  PubMed  Google Scholar 

  11. Mondoulet L, Dioszeghy V, Ligouis M, Dhelft V, Puteaux E, Dupont C, et al. Epicutaneous immunotherapy compared with sublingual immunotherapy in mice sensitized to pollen (Phleum pratense). Int Scholarly Res Not. 2012;2012:375735.

  12. Koushki K, Varasteh A-R, Shahbaz SK, Sadeghi M, Mashayekhi K, Ayati SH, et al. Dc-specific aptamer decorated gold nanoparticles: a new attractive insight into the nanocarriers for allergy epicutaneous immunotherapy. Int J Pharm. 2020;584:119403.

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Kong Y, Wu MX. Innovative systems to deliver allergen powder for epicutaneous immunotherapy. Front Immunol. 2021;12:647954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Korotchenko E, Schießl V, Scheiblhofer S, Schubert M, Dall E, Joubert IA, et al. Laser-facilitated epicutaneous immunotherapy with hypoallergenic beta-glucan neoglycoconjugates suppresses lung inflammation and avoids local side effects in a mouse model of allergic asthma. Allergy. 2021;76(1):210–22.

    Article  CAS  PubMed  Google Scholar 

  15. Nesovic LD, Shakya AK, Gill HS. Treating allergies via skin–recent advances in cutaneous allergen immunotherapy. Adv Drug Deliv Rev. 2022;190:114458.

  16. Landers JJ, Janczak KW, Shakya AK, Zarnitsyn V, Patel SR, Baker JR Jr, et al. Targeted allergen-specific immunotherapy within the skin improves allergen delivery to induce desensitization to peanut. Immunotherapy. 2022;14(7):539–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rani D, Nayak B, Srivastava S. Immunogenicity of gold nanoparticle-based truncated ORF2 vaccine in mice against Hepatitis E virus. 3 Biotech. 2021;11:1–11.

    Article  CAS  Google Scholar 

  18. Chen Y, Feng X. Gold nanoparticles for skin drug delivery. Int J Pharm. 2022;18:122122.

  19. Ko W-C, Wang S-J, Hsiao C-Y, Hung C-T, Hsu Y-J, Chang D-C, et al. Pharmacological role of functionalized gold nanoparticles in disease applications. Molecules. 2022;27(5):1551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Catuogno S, Esposito CL, De Franciscis V. Aptamer-mediated targeted delivery of therapeutics: an update. Pharmaceuticals. 2016;9(4):69.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Moghadam M, Sankian M, Abnous K, Varasteh A, Taghdisi S, Mahmoudi M, et al. Cell-SELEX-based selection and characterization of a G-quadruplex DNA aptamer against mouse dendritic cells. Int Immunopharmacol. 2016;36:324–32.

    Article  CAS  PubMed  Google Scholar 

  22. Shahbaz SK, Varasteh A-R, Koushki K, Ayati SH, Mashayekhi K, Sadeghi M, et al. Sublingual dendritic cells targeting by aptamer: Possible approach for improvement of sublingual immunotherapy efficacy. Int Immunopharmacol. 2020;85:106603.

    Article  Google Scholar 

  23. Ganji A, Varasteh A, Sankian M. Aptamers: new arrows to target dendritic cells. J Drug Target. 2016;24(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  24. Zheng L, Wu H, Wen N, Zhang Y, Wang Z, Peng X, et al. Aptamer-functionalized nanovaccines: targeting in vivo DC subsets for enhanced antitumor immunity. ACS Appl Mater Interfaces. 2023;15(15):18590–7.

  25. Wengerter BC, Katakowski JA, Rosenberg JM, Park CG, Almo SC, Palliser D, et al. Aptamer-targeted antigen delivery. Mol Ther. 2014;22(7):1375–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sadeghi M, Koushki K, Mashayekhi K, Ayati SH, Shahbaz SK, Moghadam M, et al. DC-targeted gold nanoparticles as an efficient and biocompatible carrier for modulating allergic responses in sublingual immunotherapy. Int Immunopharmacol. 2020;86:106690.

    Article  CAS  PubMed  Google Scholar 

  27. Pazouki N, Sankian M, Nejadsattari T, Khavari-Nejad R-A, Varasteh A-R, editors. Oriental plane pollen allergy: identification of allergens and cross-reactivity between relevant species. Allergy Asthma Proc. 2008;29(6):622–8

  28. Varasteh A-R. Complementary DNA cloning and immunologic characterization of a new Platanus orientalis pollen allergen, Pla or 1.0101 Nazanin Pazouki, Mojtaba Sankian, Taher Nejadsattari, Ramezan-Ali Khavari-Nejad. Res J Biol Sci. 2008;3(12):1419–25.

    Google Scholar 

  29. Sedghy F, Sankian M, Moghadam M, Varasteh A-R. Quantification of Pla or 3, a Platanus orientalis allergen, grown under different environmental conditions, by sandwich ELISA. Rep Biochem Mol Biol. 2016;5(1):40.

    PubMed  PubMed Central  Google Scholar 

  30. Sankian M, Vahedi F, Pazouki N, Moghadam M, Azad FJ, Varasteh A-R. Cloning and expression of cyclophilin from Platanus orientalis pollens in Escherichia coli. Rep Biochem Mol Biol. 2012;1(1):25.

    PubMed  PubMed Central  Google Scholar 

  31. Pong B-K, Elim HI, Chong J-X, Ji W, Trout BL, Lee J-Y. New insights on the nanoparticle growth mechanism in the citrate reduction of gold (III) salt: formation of the Au nanowire intermediate and its nonlinear optical properties. J Phys Chem C. 2007;111(17):6281–7.

    Article  CAS  Google Scholar 

  32. Kim D, Jeong YY, Jon S. A drug-loaded aptamer− gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano. 2010;4(7):3689–96.

    Article  CAS  PubMed  Google Scholar 

  33. Hajavi J, Hashemi M, Sankian M. Evaluation of size and dose effects of rChe a 3 allergen loaded PLGA nanoparticles on modulation of Th2 immune responses by sublingual immunotherapy in mouse model of rhinitis allergic. Int J Pharm. 2019;563:282–92.

    Article  CAS  PubMed  Google Scholar 

  34. Sonavane G, Tomoda K, Sano A, Ohshima H, Terada H, Makino K. In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf B Biointerfaces. 2008;65(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  35. Gopinath K, Gowri S, Karthika V, Arumugam A. Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostruct Chem. 2014;4:1–11.

    Article  Google Scholar 

  36. He YQ, Liu SP, Kong L, Liu ZF. A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochim Acta A Mol Biomol Spectrosc. 2005;61(13-14):2861–6.

    Article  PubMed  Google Scholar 

  37. Peng L, Liang Y, Zhong X, Liang Z, Tian Y, Li S, et al. Aptamer-conjugated gold nanoparticles targeting epidermal growth factor receptor variant III for the treatment of glioblastoma. Int J Nanomedicine. 2020;1363–72

  38. Kim J, Anthony MY, Kubelick KP, Emelianov SY. Gold nanoparticles conjugated with DNA aptamer for photoacoustic detection of human matrix metalloproteinase-9. Photoacoustics. 2022;25:100307.

    Article  PubMed  Google Scholar 

  39. Raju G, Katiyar N, Vadukumpully S, Shankarappa SA. Penetration of gold nanoparticles across the stratum corneum layer of thick-Skin. J Dermatol Sci. 2018;89(2):146–54.

    Article  CAS  PubMed  Google Scholar 

  40. Barreto E, Serra MF, Dos Santos RV, Dos Santos CEA, Hickmann J, Cotias AC, et al. Local administration of gold nanoparticles prevents pivotal pathological changes in murine models of atopic asthma. J Biomed Nanotechnol. 2015;11(6):1038–50.

    Article  CAS  PubMed  Google Scholar 

  41. Uchiyama MK, Deda DK, Rodrigues SFP, Drewes CC, Bolonheis SM, Kiyohara PK, et al. In vivo and in vitro toxicity and anti-inflammatory properties of gold nanoparticle bioconjugates to the vascular system. Toxicol Sci. 2014;142(2):497–507.

    Article  CAS  PubMed  Google Scholar 

  42. Tsai CY, Shiau AL, Chen SY, Chen YH, Cheng PC, Chang MY, et al. Amelioration of collagen-induced arthritis in rats by nanogold. Arthritis Rheum: Official J American Coll Rheumatol. 2007;56(2):544–54.

    Article  Google Scholar 

  43. Khan MA, Khan MJ. Nano-gold displayed anti-inflammatory property via NF-kB pathways by suppressing COX-2 activity. Artif Cells, Nanomed Biotechnol. 2018;46(sup1):1149–58.

    Article  CAS  PubMed  Google Scholar 

  44. dos Santos Haupenthal DP, Mendes C, de Bem SG, Zaccaron RP, Corrêa MEAB, Nesi RT, et al. Effects of treatment with gold nanoparticles in a model of acute pulmonary inflammation induced by lipopolysaccharide. J Biomed Mater Res A. 2020;108(1):103–15.

    Article  PubMed  Google Scholar 

  45. Chen H, Dorrigan A, Saad S, Hare DJ, Cortie MB, Valenzuela SM. In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice. PloS One. 2013;8(2):e58208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rizwan H, Mohanta J, Si S, Pal A. Gold nanoparticles reduce high glucose-induced oxidative-nitrosative stress regulated inflammation and apoptosis via tuberin-mTOR/NF-κB pathways in macrophages. Int J Nanomed. 2017;12:5841.

    Article  CAS  Google Scholar 

  47. Hussein RM, Saleh H. Promising therapeutic effect of gold nanoparticles against dinitrobenzene sulfonic acid-induced colitis in rats. Nanomedicine. 2018;13(14):1657–79.

    Article  CAS  PubMed  Google Scholar 

  48. Brimnes J, Kildsgaard J, Jacobi H, Lund K. Sublingual immunotherapy reduces allergic symptoms in a mouse model of rhinitis. Clin Exp Allergy. 2007;37(4):488–97.

    Article  CAS  PubMed  Google Scholar 

  49. Van Rijt LS, Gouveia L, Logiantara A, Canbaz D, Opstelten D-J, Van Der Kleij HP, et al. Birch pollen immunotherapy in mice: inhibition of Th2 inflammation is not sufficient to decrease airway hyper-reactivity. Int Arch Allergy Immunol. 2014;165(2):128–39.

    Article  PubMed  Google Scholar 

  50. Sampson HA, Shreffler WG, Yang WH, Sussman GL, Brown-Whitehorn TF, Nadeau KC, et al. Effect of varying doses of epicutaneous immunotherapy vs placebo on reaction to peanut protein exposure among patients with peanut sensitivity: a randomized clinical trial. Jama. 2017;318(18):1798–809.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mondoulet L, Dioszeghy V, Ligouis M, Dhelft V, Dupont C, Benhamou PH. Epicutaneous immunotherapy on intact skin using a new delivery system in a murine model of allergy. Clin Exp Allergy. 2010;40(4):659–67.

    Article  CAS  PubMed  Google Scholar 

  52. Mondoulet L, Dioszeghy V, Puteaux E, Ligouis M, Dhelft V, Plaquet C, et al. Specific epicutaneous immunotherapy prevents sensitization to new allergens in a murine model. J Allergy Clin Immunol. 2015;135(6):1546-57. e4.

  53. Dioszeghy V, Mondoulet L, Laoubi L, Dhelft V, Plaquet C, Bouzereau A, et al. Antigen uptake by Langerhans cells is required for the induction of regulatory T cells and the acquisition of tolerance during epicutaneous immunotherapy in OVA-sensitized mice. Front Immunol. 2018;9:1951.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dioszeghy V, Mondoulet L, Dhelft V, Ligouis M, Puteaux E, Benhamou P-H, et al. Epicutaneous immunotherapy results in rapid allergen uptake by dendritic cells through intact skin and downregulates the allergen-specific response in sensitized mice. J Immunol. 2011;186(10):5629–37.

    Article  CAS  PubMed  Google Scholar 

  55. Mondoulet L, Dioszeghy V, Larcher T, Ligouis M, Dhelft V, Puteaux E, et al. Epicutaneous immunotherapy (EPIT) blocks the allergic esophago-gastro-enteropathy induced by sustained oral exposure to peanuts in sensitized mice. PloS One. 2012;7(2):e31967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tordesillas L, Mondoulet L, Blazquez AB, Benhamou P-H, Sampson HA, Berin MC. Epicutaneous immunotherapy induces gastrointestinal LAP+ regulatory T cells and prevents food-induced anaphylaxis. J Allergy Clin Immunol. 2017;139(1):189-201. e4.

    Article  PubMed  Google Scholar 

  57. Lin AY, Lunsford J, Bear AS, Young JK, Eckels P, Luo L, et al. High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro. Nanoscale Res Lett. 2013;8:1–11.

    Article  Google Scholar 

  58. Ahn S, Lee IH, Kang S, Kim D, Choi M, Saw PE, et al. Gold nanoparticles displaying tumor-associated self-antigens as a potential vaccine for cancer immunotherapy. Adv Healthc Mater. 2014;3(8):1194–9.

    Article  CAS  PubMed  Google Scholar 

  59. Liu G, Liu M, Wang J, Mou Y, Che H. The role of regulatory T cells in epicutaneous immunotherapy for food allergy. Front Immunol. 2021;12:660974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dioszeghy V, Mondoulet L, Dhelft V, Ligouis M, Puteaux E, Dupont C, et al. The regulatory T cells induction by epicutaneous immunotherapy is sustained and mediates long-term protection from eosinophilic disorders in peanut-sensitized mice. Clin Exp Allergy. 2014;44(6):867–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mondoulet L, Dioszeghy V, Puteaux E, Ligouis M, Dhelft V, Letourneur F, et al. Intact skin and not stripped skin is crucial for the safety and efficacy of peanut epicutaneous immunotherapy (EPIT) in mice. Clin Transl Allergy. 2012;2(1):1–12.

    Article  Google Scholar 

  62. Choi BS. Is determining nasal eosinophil count and nasal eosinophil peroxidase concentration clinically useful in children with rhinits? Korean J Pediatr. 2019;62(9):342–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pawankar R, Mori S, Ozu C, Kimura S. Overview on the pathomechanisms of allergic rhinitis. Asia Pac Allergy. 2011;1(3):157–67.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chen Y, Yang M, Deng J, Wang K, Shi J, Sun Y. Elevated levels of activated and pathogenic eosinophils characterize moderate-severe house dust mite allergic rhinitis. J Immunol Res. 2020;2020:8085615

  65. Salari F, Varasteh A-R, Vahedi F, Hashemi M, Sankian M. Down-regulation of Th2 immune responses by sublingual administration of poly (lactic-co-glycolic) acid (PLGA)-encapsulated allergen in BALB/c mice. Int Immunopharmacol. 2015;29(2):672–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Shaterzade for evaluating lung histopathology and Dr. Ganji for offering the DC-specific aptamer sequence.

Funding

This work was supported by the research deputy at Mashhad University of Medical Sciences, Mashhad, Iran, under Grant No (981773).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Sankian.

Ethics declarations

We declare that some parts of fig. 1, 2, and 3A were drawn using pictures from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/). This Figure was modified with text, markings, and annotation using Microsoft Office PowerPoint (version 2010). The first author prepared the graphs (Figs. 3B, 4, 5, and 6) using GraphPad Prism (version 8.4.2, California, USA). Histological photographs were taken with a digital camera (Fig. 7). Scanning electron microscopy (SEM) (MIRA3 TESCAN, Czech Republic) was used to obtain microscopic images of nanoparticles (Fig. 3C).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the entirety of graphic design as their own.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

Supplementary 1. gel electrophoresis of DC specific Apt-modified GNPs. Well 1 and 3 were loaded with Apt-modified GNPs and well 2 with naked GNPs (PNG 889 kb)

High resolution image (TIF 2713 kb)

ESM 2

Supplementary 2. SDS-PAGE analysis to evaluate the loaded protein of Pla.orintalis pollen extract on GNPs, well 1: total extract (1000 μg/ml), well 2: 100 μg total extract as control, well 3: non-binding protein of Pla.orintalis pollen extract on GNPs; well 4: detached protein of “Pla. ext-Apts-GNPs” complex, well 5: LMW protein marker (PNG 1352 kb)

High resolution image (TIF 4251 kb)

ESM 3

Supplementary 3. Viability of NIH 3T3 cells and PBMCs treated with different concentrations of GNPs and Apts-GNPs (PNG 165 kb)

High resolution image (TIF 537 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pordel, S., Haghnavaz, N., Rezaee, M. et al. An epicutaneous therapeutic pollen-allergen extract delivery system in an allergic rhinitis mouse model: based on allergen loading on DC-specific aptamers conjugated nanogolds. Immunol Res (2023). https://doi.org/10.1007/s12026-023-09445-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12026-023-09445-6

Keywords

Navigation