Skip to main content

Advertisement

Log in

COVID-19 infection: a possible induction factor for development of autoimmune diseases?

  • REVIEW
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Following the global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the importance of investigation of the pathogenesis and immunological characteristics of COVID-19 became quite clear. Currently, there are reports indicating that COVID-19 is able to induce autoimmune responses. Abnormal immune reactions are a cornerstone in the pathogenicity of both conditions. Detection of autoantibodies in COVID-19 patients may suggest a link between COVID-19 and autoimmunity. In this study, we focused on the similarities and possible differences between COVID-19 and autoimmune disorders to explore the relationship between them. Comparing the pathogenicity of SARS-CoV-2 infection with autoimmune conditions revealed significant immunological properties of COVID-19 including the presence of several autoantibodies, autoimmunity-related cytokines, and cellular activities that could be useful in future clinical studies aiming at managing this pandemic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wang C, Pan R, Wan X, Tan Y, Xu L, Ho CS, et al. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. Int J Environ Res Public Health. 2020;17(5):1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mahase E. China coronavirus: WHO declares international emergency as death toll exceeds 200. BMJ Brit Med J (Online). 2020;368.

  3. Thienemann F, Pinto F, Grobbee DE, Boehm M, Bazargani N, Ge J, et al. World heart federation briefing on prevention: Coronavirus disease 2019 (COVID-19) in low-income countries. Global Heart. 2020;15(1).

  4. Rokni M, Hamblin MR, Rezaei N. Cytokines and COVID-19: Friends or foes? Hum Vaccin Immunother. 2020;16(10):2363–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chetaille Nézondet AL, Poubelle PE, Pelletier M. The evaluation of cytokines to help establish diagnosis and guide treatment of autoinflammatory and autoimmune diseases. J Leukoc Biol. 2020;108(2):647–57.

    Article  PubMed  Google Scholar 

  6. Getts DR, Chastain EM, Terry RL, Miller SD. Virus infection, antiviral immunity, and autoimmunity. Immunol Rev. 2013;255(1):197–209.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ehrenfeld M, Tincani A, Andreoli L, Cattalini M, Greenbaum A, Kanduc D, et al. Covid-19 and autoimmunity. Autoimmun Rev. 2020;19(8):102597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang J, Jiang M, Chen X, Montaner LJ. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol. 2020;108(1):17–41.

    Article  CAS  PubMed  Google Scholar 

  10. Rodríguez Y, Novelli L, Rojas M, De Santis M, Acosta-Ampudia Y, Monsalve DM, et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun. 2020;114:102506.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm: What we know so far. Front Immunol. 2020;11:1446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: Immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hussein HM, Rahal EA. The role of viral infections in the development of autoimmune diseases. Crit Rev Microbiol. 2019;45(4):394–412.

    Article  CAS  PubMed  Google Scholar 

  15. Harley JB, James JA. Everyone comes from somewhere: Systemic lupus erythematosus and Epstein-Barr virus induction of host interferon and humoral anti-Epstein-Barr nuclear antigen 1 immunity. Arthritis Rheum. 2010;62(6):1571–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jog NR, Young KA, Munroe ME, Harmon MT, Guthridge JM, Kelly JA, et al. Association of Epstein-Barr virus serological reactivation with transitioning to systemic lupus erythematosus in at-risk individuals. Ann Rheum Dis. 2019;78(9):1235–41.

    Article  CAS  PubMed  Google Scholar 

  17. Lucchese G, Flöel A. Molecular mimicry between SARS-CoV-2 and respiratory pacemaker neurons. Autoimmun Rev. 2020;19(7):102556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marino Gammazza A, Légaré S, Lo Bosco G, Fucarino A, Angileri F, Conway de Macario E, et al. Human molecular chaperones share with SARS-CoV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: Possible role of molecular mimicry in COVID-19. Cell Stress Chaperones. 2020;25(5):737–41.

  19. Lucchese G, Flöel A. SARS-CoV-2 and Guillain-Barré syndrome: Molecular mimicry with human heat shock proteins as potential pathogenic mechanism. Cell Stress Chaperones. 2020;25(5):731–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Venkatakrishnan AJ, Kayal N, Anand P, Badley AD, Church GM, Soundararajan V. Benchmarking evolutionary tinkering underlying human-viral molecular mimicry shows multiple host pulmonary-arterial peptides mimicked by SARS-CoV-2. Cell Death Discov. 2020;6(1):96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kanduc D. From anti-SARS-CoV-2 immune responses to COVID-19 via molecular mimicry. Antibodies. 2020;9(3):33–8.

  22. Muller S, Radic M. Oxidation and mitochondrial origin of NET DNA in the pathogenesis of lupus. Nat Med. 2016;22(2):126–7.

    Article  CAS  PubMed  Google Scholar 

  23. Apel F, Zychlinsky A, Kenny EF. The role of neutrophil extracellular traps in rheumatic diseases. Nat Rev Rheumatol. 2018;14(8):467–75.

    Article  CAS  PubMed  Google Scholar 

  24. Wigerblad G, Kaplan MJ. NETs spread ever wider in rheumatic diseases. Nat Rev Rheumatol. 2020;16(2):73–4.

    Article  CAS  PubMed  Google Scholar 

  25. Ali RA, Gandhi AA, Meng H, Yalavarthi S, Vreede AP, Estes SK, et al. Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome. Nat Commun. 2019;10(1):1916.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Skendros P, Mitsios A, Chrysanthopoulou A, Mastellos DC, Metallidis S, Rafailidis P, et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest. 2020;130(11):6151–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McDonald B, Davis RP, Kim SJ, Tse M, Esmon CT, Kolaczkowska E, et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood. 2017;129(10):1357–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Englert H, Rangaswamy C, Deppermann C, Sperhake JP, Krisp C, Schreier D, et al. Defective NET clearance contributes to sustained FXII activation in COVID-19-associated pulmonary thrombo-inflammation. EBioMedicine. 2021;67:103382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Noubouossie DF, Reeves BN, Strahl BD, Key NS. Neutrophils: Back in the thrombosis spotlight. Blood. 2019;133(20):2186–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bonaventura A, Vecchié A, Dagna L, Martinod K, Dixon DL, Van Tassell BW, et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021;21(5):319–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee JS, Shin EC. The type I interferon response in COVID-19: Implications for treatment. Nat Rev Immunol. 2020;20(10):585–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Northcott M, Jones S, Koelmeyer R, Bonin J, Vincent F, Kandane-Rathnayake R, et al. Type 1 interferon status in systemic lupus erythematosus: A longitudinal analysis. Lupus Sci Med. 2022;9(1):e000625.

    Article  PubMed  PubMed Central  Google Scholar 

  33. da Silva RP, Gonçalves JIB, Zanin RF, Schuch FB, de Souza APD. Circulating type I interferon levels and COVID-19 severity: A systematic review and meta-analysis. Front Immunol. 2021;12:657363.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Crow MK. Type I interferon in the pathogenesis of lupus. J Immunol. 2014;192(12):5459–68.

    Article  CAS  PubMed  Google Scholar 

  35. Merrill JT, Erkan D, Winakur J, James JA. Emerging evidence of a COVID-19 thrombotic syndrome has treatment implications. Nat Rev Rheumatol. 2020;16(10):581–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mahajan A, Herrmann M, Muñoz LE. Clearance deficiency and cell death pathways: A model for the pathogenesis of SLE. Front Immunol. 2016;7:35.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Setiati S, Harimurti K, Safitri ED, Ranakusuma RW, Saldi SRF, Azwar MK, et al. Risk factors and laboratory test results associated with severe illness and mortality in COVID-19 patients: A systematic review. Acta Med Indones. 2020;52(3):227–45.

    PubMed  Google Scholar 

  38. Ziadi A, Hachimi A, Admou B, Hazime R, Brahim I, Douirek F, et al. Lymphopenia in critically ill COVID‐19 patients: A predictor factor of severity and mortality. Int J Lab Hematol. 2021;43(1):38–43.

  39. Wang J, Li Q, Yin Y, Zhang Y, Cao Y, Lin X, et al. Excessive neutrophils and neutrophil extracellular traps in COVID-19. Front Immunol. 2021;43(1):e38–46.

  40. Satış H, Özger HS, Yıldız PA, Hızel K, Gulbahar Ö, Erbaş G, et al. Prognostic value of interleukin-18 and its association with other inflammatory markers and disease severity in COVID-19. Cytokine. 2021;137:155302.

    Article  PubMed  Google Scholar 

  41. Vassallo M, Manni S, Pini P, Blanchouin E, Ticchioni M, Seitz-Polski B, et al. Patients with Covid-19 exhibit different immunological profiles according to their clinical presentation. Int J Infect Dis. 2020;101:174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun Y, Dong Y, Wang L, Xie H, Li B, Chang C, et al. Characteristics and prognostic factors of disease severity in patients with COVID-19: The Beijing experience. J Autoimmun. 2020;112:102473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dotan A, Muller S, Kanduc D, David P, Halpert G, Shoenfeld Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun Rev. 2021;20(4):102792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases. Curr Opin Rheumatol. 2021;33(2):155–62.

    Article  PubMed  Google Scholar 

  45. Wang JY, Roehrl MW, Roehrl VB, Roehrl MH. A master autoantigen-ome links alternative splicing, female predilection, and COVID-19 to autoimmune diseases. J Transl Autoimmun. 2022;5:100147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang JY, Zhang W, Roehrl VB, Roehrl MW, Roehrl MH. An autoantigen-ome from HS-sultan B-lymphoblasts offers a molecular map for investigating autoimmune sequelae of COVID-19. bioRxiv. 2021;3(12):24–33.

  47. Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013;5(178):178ra40.

  48. Zuo Y, Yalavarthi S, Navaz SA, Hoy CK, Harbaugh A, Gockman K, et al. Autoantibodies stabilize neutrophil extracellular traps in COVID-19. JCI Insight. 2021;6(15):12–23.

  49. Torres-Ruiz J, Absalón-Aguilar A, Nuñez-Aguirre M, Pérez-Fragoso A, Carrillo-Vázquez DA, Maravillas-Montero JL, et al. Neutrophil extracellular traps contribute to COVID-19 hyperinflammation and humoral autoimmunity. Cells. 2021;10(10):32–44.

  50. Richter AG, Shields AM, Karim A, Birch D, Faustini SE, Steadman L, et al. Establishing the prevalence of common tissue-specific autoantibodies following severe acute respiratory syndrome coronavirus 2 infection. Clin Exp Immunol. 2021;205(2):99–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jin M, Tong Q. Rhabdomyolysis as potential late complication associated with COVID-19. Emerg Infect Dis. 2020;26(7):1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Saud A, Naveen R, Aggarwal R, Gupta L. COVID-19 and myositis: What we know so far. Curr Rheumatol Rep. 2021;23(8):1–16.

    Article  Google Scholar 

  53. Gokhale Y, Patankar A, Holla U, Shilke M, Kalekar L, Karnik ND, et al. Dermatomyositis during COVID-19 pandemic (a case series): Is there a cause effect relationship? J Assoc Physicians India. 2020;68(11):20–4.

    PubMed  Google Scholar 

  54. Pascolini S, Granito A, Muratori L, Lenzi M, Muratori P. Coronavirus disease associated immune thrombocytopenia: Causation or correlation? J Microbiol Immunol Infect. 2021;54(3):531.

    Article  CAS  PubMed  Google Scholar 

  55. Rahi MS, Jindal V, Reyes S-P, Gunasekaran K, Gupta R, Jaiyesimi I. Hematologic disorders associated with COVID-19: A review. Ann Hematol. 2021;100(2):309–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nagu P, Parashar A, Behl T, Mehta V. CNS implications of COVID-19: A comprehensive review. Rev Neurosci. 2021;32(2):219–34.

    Article  CAS  PubMed  Google Scholar 

  57. Scappaticcio L, Pitoia F, Esposito K, Piccardo A, Trimboli P. Impact of COVID-19 on the thyroid gland: An update. Rev Endocr Metab Disord. 2021;22(4):803–15.

    Article  CAS  PubMed  Google Scholar 

  58. Finsterer J, Scorza FA. Infectious and immune-mediated central nervous system disease in 48 COVID-19 patients. J Clin Neurosci. 2021;90:140–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ismail II, Al-Hashel J, Alroughani R, Ahmed SF. A case report of multiple sclerosis after COVID-19 infection: Causality or coincidence? Neuroimmunol Rep. 2021;1:100008.

    Article  CAS  Google Scholar 

  60. Ismail II, Al-Hashel J, Alroughani R, Ahmed SF. Association of multiple sclerosis and COVID-19 infection: A case report. MultScler Relat Disord. 2022;14(3):59–63.

  61. Rajdev K, Victor N, Buckholtz ES, Hariharan P, Saeed MA, Hershberger DM, et al. A case of Guillain-Barré syndrome associated with COVID-19. J Investig Med High Impact Case Rep. 2020;8:2324709620961198.

    PubMed  PubMed Central  Google Scholar 

  62. Rajdev K, Victor N, Buckholtz ES, Hariharan P, Saeed MA, Hershberger DM, et al. A case of Guillain-Barré syndrome associated with COVID-19. J Investig Med High Impact Case Rep. 2020;8:2324709620961198.

    PubMed  PubMed Central  Google Scholar 

  63. Palao M, Fernández-Díaz E, Gracia-Gil J, Romero-Sánchez C, Díaz-Maroto I, Segura T. Multiple sclerosis following SARS-CoV-2 infection. Mult Scler Relat Disord. 2020;45:102377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou S, Jones-Lopez EC, Soneji DJ, Azevedo CJ, Patel VR. Myelin oligodendrocyte glycoprotein antibody–associated optic neuritis and myelitis in COVID-19.J Neuro-ophthalmol. 2020;12(2):23–9.

  65. Knack RS, Hanada T, Knack RS, Mayr K. Hashimoto’s thyroiditis following SARS-CoV-2 infection. BMJ Case Rep CP. 2021;14(8):e244909.

    Article  Google Scholar 

  66. Mateu-Salat M, Urgell E, Chico A. SARS-COV-2 as a trigger for autoimmune disease: Report of two cases of Graves’ disease after COVID-19. J Endocrinol Invest. 2020;43(10):1527–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Trovato CM, Montuori M, Pietropaoli N, Oliva S. COVID-19 and celiac disease: A pathogenetic hypothesis for a celiac outbreak. Int J Clin Pract. 2021;75(9):e14452.

    Article  CAS  PubMed  Google Scholar 

  68. Guerra I, Algaba A, Jiménez L, Mar Aller M, Garza D, Bonillo D, et al. Incidence, clinical characteristics, and evolution of SARS-CoV-2 infection in patients with inflammatory bowel disease: A single-center study in Madrid, Spain. Inflamm Bowel Dis. 2021;27(1):25–33.

    Article  PubMed  Google Scholar 

  69. Bril F, Al Diffalha S, Dean M, Fettig DM. Autoimmune hepatitis developing after coronavirus disease 2019 (COVID-19) vaccine: Causality or casualty? J Hepatol. 2021;75(1):222–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bartoli A, Gitto S, Sighinolfi P, Cursaro C, Andreone P. Primary biliary cholangitis associated with SARS-CoV-2 infection. J Hepatol. 2021;74(5):1245–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Masuko K. Will the COVID-19 pandemic trigger future occurrence of autoimmunity like Sjögren’s syndrome? Int J Rheum Dis. 2021;24(7):963–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Toor SM, Saleh R, Sasidharan Nair V, Taha RZ, Elkord E. T-cell responses and therapies against SARS-CoV-2 infection. Immunology. 2021;162(1):30–43.

    Article  CAS  PubMed  Google Scholar 

  73. Koga T, Ichinose K, Kawakami A, Tsokos GC. Current insights and future prospects for targeting IL-17 to treat patients with systemic lupus erythematosus. Front Immunol. 2020;11:624971.

    Article  CAS  PubMed  Google Scholar 

  74. Bhattacharjee S, Banerjee M. Immune thrombocytopenia secondary to COVID-19: A systematic review. SN Compr Clin Med. 2020;2(11):2048–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fathi N, Rezaei N. Lymphopenia in COVID-19: Therapeutic opportunities. Cell Biol Int. 2020;44(9):1792–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cavalcante-Silva LHA, Carvalho DCM, de Almeida Lima É, Galvao JG, da Silva JSdF, de Sales-Neto JM, et al. Neutrophils and COVID-19: The road so far. Int Immunopharmacol. 2021;90:107233.

  77. Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID-19. J Thromb Haemost. 2020;18(9):2103–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Muhammed L, Baheerathan A, Cao M, Leite MI, Viegas S. MuSK antibody-associated myasthenia gravis with SARS-CoV-2 infection: A case report. Ann Intern Med. 2021;174(6):872–3.

    Article  PubMed  Google Scholar 

  79. Kabeerdoss J, Danda D. Understanding immunopathological fallout of human coronavirus infections including COVID-19: Will they cross the path of rheumatologists? Int J Rheum Dis. 2020;23(8):998–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ladani AP, Loganathan M, Danve A. Managing rheumatic diseases during COVID-19. Clin Rheumatol. 2020;39(11):3245–54.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Akiyama S, Hamdeh S, Micic D, Sakuraba A. Prevalence and clinical outcomes of COVID-19 in patients with autoimmune diseases: A systematic review and meta-analysis. Ann Rheum Dis. 2021;80(3):384–91.

  82. Owlia S, Owlia MB. Glucocorticoids in COVID19; a friend not foe. J Res Med Sci. 2020;25:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cabanillas F, Morales J, Conde JG, Bertrán-Pasarell J, Fernández R, Hernandez-Silva Y, et al. Single-arm, open-label phase 2 trial of preemptive methylprednisolone to avert progression to respiratory failure in high-risk patients with COVID-19. medRxiv. 2021;23(4):33–9.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikoo Saeedi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeedi, N., Gohari, N.S.F., Ghalibaf, A.A.M. et al. COVID-19 infection: a possible induction factor for development of autoimmune diseases?. Immunol Res 71, 547–553 (2023). https://doi.org/10.1007/s12026-023-09371-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-023-09371-7

Keywords

Navigation