Skip to main content

Advertisement

Log in

Immune tumoral microenvironment in gliomas: focus on CD3+ T cells, Vδ1+ T cells, and microglia/macrophages

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Gliomas are histologically defined as low-grade gliomas (LGG) and high-grade gliomas (HGG). The most common type of HGG is the glioblastoma (GBM). We aimed to determine the immunological characteristics of CD3 T-cells, Vδ1 T-cells, and microglia/macrophages infiltrating brain gliomas. We collected 24 formalin-fixed paraffin-embedded samples issued from 19 cases of GBM and 5 cases of LGG. An immunohistochemical analysis was performed using anti-CD3, anti-Vδ1, and anti-iba-1 antibodies. Labelling indexes (LI) of CD3 and Vδ1 were evaluated quantitatively, and other CD3, Vδ1, and iba-1 staining characteristics were evaluated qualitatively. The median age of patients was 49 years in GBM and 52 years in LGG. The sex ratio was 1.4 and GBM predominated in males (p = 0.05). In GBM, the medians of CD3-LI and Vδ1-LI were 30 and 3.5 respectively. CD3-LI inversely correlated with survival in GBM cases (r =  − 0.543; p = 0.016). CD3 staining intensity correlated with CD3-LI (p < 0.0001) and with the survival in GBM cases (p = 0.003). Compared to LGG, the CD3-LI, the intensity of intra-tumoral Vδ1 staining, and the amount of iba-1 were higher in GBM (p = 0.042; p = 0.014; and p = 0.001 respectively). The iba-1 organization was more amoeboid in older patients and more branched in younger patients (p = 0.028) and tended to be more amoeboid in cases with high iba-1 amount (p = 0.09). Our results suggest that a high level of CD3-LI and a strong intra-tumoral infiltration of Vδ1 T-cells as well as a high involvement of TAM can be considered potential markers of poor prognosis of GBM. However, this requires further studies on more balanced GBM-LGG sample, including an expanded panel of biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8 
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Code availability

Not applicable.

Data Availability

Not applicable.

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al 2007 The 2007 WHO classification of tumours of the central nervous system. 114:97–109.

  2. Pereira MB, Barros LRC, Bracco PA, Vigo A, Boroni M, Bonamino MH, et al 2018 Transcriptional characterization of immunological infiltrates and their relation with glioblastoma patients overall survival. Oncoimmunology; 7:e1431083.

  3. Robins HS, Ericson NG, Guenthoer J, O’Briant KC, Tewari M, Drescher CW, et al 2013 Digital genomic quantification of tumor-infiltrating lymphocytes. Sci Transl Med; 5:214ra169.

  4. Correia D V., Lopes A, Silva-Santos B 2013 Tumor cell recognition by γδ T lymphocytes: T-cell receptor vs. NK-cell receptors. Oncoimmunology; 2:e22892.

  5. D’Alessio A, Proietti G, Sica G, Scicchitano BM 2019 Pathological and molecular features of glioblastoma and its peritumoral tissue. Cancers (Basel); 11:469.

  6. Roesch S, Rapp C, Dettling S, Herold-Mende C 2018 When immune cells turn bad-tumor-associated microglia/macrophages in glioma. Int J Mol Sci; 19:436.

  7. Szulzewsky F, Pelz A, Feng X, Synowitz M, Markovic D, Langmann T, et al 2015 Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS One; 10:e0116644.

  8. Ricard C, Tchoghandjian A, Luche H, Grenot P, Figarella-Branger D, Rougon G, et al. Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice. Sci Rep. 2016;6:26381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boche D, Perry VH, Nicoll JAR. Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol. 2013;39:3–18.

    Article  CAS  PubMed  Google Scholar 

  10. Sørensen MD, Dahlrot RH, Boldt HB, Hansen S, Kristensen BW. Tumour-associated microglia/macrophages predict poor prognosis in high-grade gliomas and correlate with an aggressive tumour subtype. Neuropathol Appl Neurobiol. 2018;44:185–206.

    Article  PubMed  Google Scholar 

  11. Yi L, Xiao H, Xu M, Ye X, Hu J, Li F, et al. Glioma-initiating cells: a predominant role in microglia/macrophages tropism to glioma. J Neuroimmunol. 2011;232:75–82.

    Article  CAS  PubMed  Google Scholar 

  12. Su J, Long W, Ma Q, Xiao K, Li Y, Xiao Q, et al 2019 Identification of a tumor microenvironment-related eight-gene signature for predicting prognosis in lower-grade gliomas. Front Genet; 10:1143.

  13. Kmiecik J, Poli A, Brons NHC, Waha A, Eide GE, Enger PØ, et al. Elevated CD3+ and CD8+ tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and at the systemic level. J Neuroimmunol. 2013;264:71–83.

    Article  CAS  PubMed  Google Scholar 

  14. El Andaloussi A, Lesniak MS. An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro Oncol. 2006;8:234–43.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim YH, Jung TY, Jung S, Jang WY, Moon KS, Kim IY, et al. Tumour-infiltrating T-cell subpopulations in glioblastomas. Br J Neurosurg. 2012;26:21–7.

    Article  PubMed  Google Scholar 

  16. Orrego E, Castaneda CA, Castillo M, Bernabe LA, Casavilca S, Chakravarti A, et al 2018 Distribution of tumor-infiltrating immune cells in glioblastoma. CNS Oncol; 7:CNS21.

  17. Carreño LJ, González PA, Kalergis AM. Modulation of T cell function by TCR/pMHC binding kinetics. Immunobiology. 2006;211:47–64.

    Article  PubMed  Google Scholar 

  18. Lambert C, Genin C. CD3 bright lymphocyte population reveal gammadelta T cells. Cytometry B Clin Cytom. 2004;61:45–53.

    Article  PubMed  Google Scholar 

  19. Bidot C, Gruy F, Haudin CS, El Hentati F, Guy B, Lambert C. Mathematical modeling of T-cell activation kinetic. J Comput Biol. 2008;15:105–28.

    Article  CAS  PubMed  Google Scholar 

  20. Caleb Rutledge W, Kong J, Gao J, Gutman DA, Cooper LAD, Appin C, et al. Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class. Clin Cancer Res. 2013;19:4951–60.

    Article  PubMed  Google Scholar 

  21. Rathore AS, Kumar S, Konwar R, Makker A, Negi MPS, Goel MM. CD3+, CD4+ & CD8+ tumour infiltrating lymphocytes (TILs) are predictors of favourable survival outcome in infiltrating ductal carcinoma of breast. Indian J Med Res. 2014;140:361–9.

    PubMed  PubMed Central  Google Scholar 

  22. Sharma P, Shen Y, Wen S, Yamada S, Jungbluth AA, Gnjatic S, et al. CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proc Natl Acad Sci U S A. 2007;104:3967–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beatty GL, Paterson Y. IFN-gamma-dependent inhibition of tumor angiogenesis by tumor-infiltrating CD4+ T cells requires tumor responsiveness to IFN-gamma. J Immunol. 2001;166:2276–82.

    Article  CAS  PubMed  Google Scholar 

  24. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A. 2005;102:18538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhai L, Ladomersky E, Lauing KL, Wu M, Genet M, Gritsina G, et al. Infiltrating T cells increase IDO1 expression in glioblastoma and contribute to decreased patient survival. Clin Cancer Res. 2017;23:6650–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chitadze G, Oberg HH, Wesch D, Kabelitz D. The ambiguous role of γδ T lymphocytes in antitumor immunity. Trends Immunol. 2017;38:668–78.

    Article  CAS  PubMed  Google Scholar 

  27. Knight A, Arnouk H, Britt W, Gillespie GY, Cloud GA, Harkins L, et al 2013 CMV-independent lysis of glioblastoma by ex vivo expanded/activated Vδ1+ γδ T cells. PLoS One; 8:e68729.

  28. Wischhusen J, Friese MA, Mittelbronn M, Meyermann R, Weller M. HLA-E protects glioma cells from NKG2D-mediated immune responses in vitro: implications for immune escape in vivo. J Neuropathol Exp Neurol. 2005;64:523–8.

    Article  CAS  PubMed  Google Scholar 

  29. Siegers GM, Dhamko H, Wang XH, Mathieson AM, Kosaka Y, Felizardo TC, et al. Human Vδ1 γδ T cells expanded from peripheral blood exhibit specific cytotoxicity against B-cell chronic lymphocytic leukemia-derived cells. Cytotherapy. 2011;13:753–64.

    Article  CAS  PubMed  Google Scholar 

  30. Lo Presti E, Di Mitri R, Pizzolato G, Mocciaro F, Dieli F, Meraviglia S. γδ cells and tumor microenvironment: a helpful or a dangerous liason? J Leukoc Biol. 2018;103:485–92.

    Article  CAS  PubMed  Google Scholar 

  31. Bryant NL, Suarez-Cuervo C, Gillespie GY, Markert JM, Nabors LB, Meleth S, et al. Characterization and immunotherapeutic potential of gammadelta T-cells in patients with glioblastoma. Neuro Oncol. 2009;11:357–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma C, Zhang Q, Ye J, Wang F, Zhang Y, Wevers E, et al. Tumor-infiltrating γδ T lymphocytes predict clinical outcome in human breast cancer. J Immunol. 2012;189:5029–36.

    Article  CAS  PubMed  Google Scholar 

  33. Wu Y, Kyle-Cezar F, Woolf RT, Naceur-Lombardelli C, Owen J, Biswas D, et al 2019 An innate-like Vδ1 + γδ T cell compartment in the human breast is associated with remission in triple-negative breast cancer. Sci Transl Med; 11.

  34. Zhou BY, Gong JH, Cai XY, Wang JX, Luo F, Jiang N, et al. An imbalance between stellate cells and γδT cells contributes to hepatocellular carcinoma aggressiveness and recurrence. Hepatol Int. 2019;13:631–40.

    Article  PubMed  Google Scholar 

  35. Peng G, Wang HY, Peng W, Kiniwa Y, Seo KH, Wang RF. Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity. 2007;27:334–48.

    Article  CAS  PubMed  Google Scholar 

  36. Kühl AA, Pawlowski NN, Grollich K, Blessenohl M, Westermann J, Zeitz M, et al. Human peripheral gammadelta T cells possess regulatory potential. Immunology. 2009;128:580–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Daley D, Zambirinis CP, Seifert L, Akkad N, Mohan N, Werba G, et al. γδ T cells support pancreatic oncogenesis by restraining αβ T cell activation. Cell. 2016;166:1485-1499.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qian X, Chen H, Wu X, Hu L, Huang Q, Jin Y. Interleukin-17 acts as double-edged sword in anti-tumor immunity and tumorigenesis. Cytokine. 2017;89:34–44.

    Article  CAS  PubMed  Google Scholar 

  39. Pereboeva L, Harkins L, Wong S, Lamb LS. The safety of allogeneic innate lymphocyte therapy for glioma patients with prior cranial irradiation. Cancer Immunol Immunother. 2015;64:551–62.

    Article  CAS  PubMed  Google Scholar 

  40. Siegers GM, Lamb LS. Cytotoxic and regulatory properties of circulating Vδ1+ γδ T cells: a new player on the cell therapy field? Mol Ther. 2014;22:1416–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Villeneuve J, Galarneau H, Beaudet MJ, Tremblay P, Chernomoretz A, Vallières L. Reduced glioma growth following dexamethasone or anti-angiopoietin 2 treatment. Brain Pathol. 2008;18:401–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kabelitz D, Serrano R, Kouakanou L, Peters C, Kalyan S. Cancer immunotherapy with γδ T cells: many paths ahead of us. Cell Mol Immunol. 2020;17:925–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chitadze G, Flüh C, Quabius ES, Freitag-Wolf S, Peters C, Lettau M, Bhat J, Wesch D, Oberg HH, Luecke S, Janssen O, Synowitz M, Held-Feindt J, Kabelitz D 2017 In-depth immunophenotyping of patients with glioblastoma multiforme: impact of steroid treatment. Oncoimmunology; 6:e1358839.

  44. Chen X, Shang W, Xu R, Wu M, Zhang X, Huang P, et al 2019 Distribution and functions of γδ T cells infiltrated in the ovarian cancer microenvironment. J Transl Med; 17:144.

  45. Yang Y, Xu C, Wu D, Wang Z, Wu P, Li L, et al. γδ T cells: Crosstalk between microbiota, chronic inflammation, and colorectal cancer. Front Immunol. 2018;9:1483.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hu G, Wu P, Cheng P, Zhang Z, Wang Z, Yu X, et al. Tumor-infiltrating CD39 +γδ Tregs are novel immunosuppressive T cells in human colorectal cancer. Oncoimmunology; 2017;6:e1277305.

  47. Chabab G, Boissière-Michot F, Mollevi C, Ramos J, Lopez-Crapez E, Colombo PE, et al. Diversity of Tumor-Infiltrating, γδ T-Cell Abundance in Solid Cancers. Cells. Cells; 2020;9:1537.

  48. Cordova A, Toia F, la Mendola C, Orlando V, Meraviglia S, Rinaldi G, et al 2012 Characterization of human γδ T lymphocytes infiltrating primary malignant melanomas. PLoS One; 7:e49878.

  49. Meraviglia S, Lo Presti E, Tosolini M, La Mendola C, Orlando V, Todaro M, et al. Distinctive features of tumor-infiltrating γδ T lymphocytes in human colorectal cancer. Oncoimmunology; 2017;6:e1347742.

  50. Cai XY, Wang JX, Yi Y, He HW, Ni XC, Zhou J, et al. Low counts of γδ T cells in peritumoral liver tissue are related to more frequent recurrence in patients with hepatocellular carcinoma after curative resection. Asian Pac J Cancer Prev. 2014;15:775–80.

    Article  PubMed  Google Scholar 

  51. Oberg HH, Peipp M, Kellner C, Sebens S, Krause S, Petrick D, et al. Novel bispecific antibodies increase γδ T-cell cytotoxicity against pancreatic cancer cells. Cancer Res. 2014;74:1349–60.

    Article  CAS  PubMed  Google Scholar 

  52. Wesch D, Kabelitz D, Oberg HH. Tumor resistance mechanisms and their consequences on γδ T cell activation. Immunol Rev. 2020;298:84–98.

    Article  CAS  PubMed  Google Scholar 

  53. Russo D, Russo C Dello, Cappoli N 2018 Glioma associated microglia/macrophages, a potential pharmacological target to promote antitumor inflammatory immune response in the treatment of glioblastoma. Neuroimmunol Neuroinflammation. OAE Publishing Inc.; 5:36.

  54. Badie B, Schartner JM. Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery. 2000;46:957–62.

    CAS  PubMed  Google Scholar 

  55. Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 2004;104:2224–34.

    Article  CAS  PubMed  Google Scholar 

  56. Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H. The brain tumor microenvironment. Glia. 2011;59:1169–80.

    Article  PubMed  Google Scholar 

  57. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S. Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res. 1998;57:1–9.

    Article  CAS  PubMed  Google Scholar 

  58. Szulzewsky F, Arora S, de Witte L, Ulas T, Markovic D, Schultze JL, et al. Human glioblastoma-associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples. Glia. 2016;64:1416–36.

    Article  PubMed  Google Scholar 

  59. Gabrusiewicz K, Rodriguez B, Wei J, Hashimoto Y, Healy LM, Maiti SN, et al 2016 Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight 1:e85841.

  60. Atri C, Guerfali FZ, Laouini D 2018 Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci 19:1801.

  61. Martinez FO, Gordon S 2014 The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13.

  62. Lin J Da, Nishi H, Poles J, Niu X, Mccauley C, Rahman K, et al 2019 Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression. JCI Insight 4:e124574.

  63. Lewis CE, Harney AS, Pollard JW. The multifaceted role of perivascular macrophages in tumors. Cancer Cell. 2016;30:18–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sierra A, Encinas JM, Deudero JJP, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 2010;7:483–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kaffes I, Szulzewsky F, Chen Z, Herting CJ, Gabanic B, Velázquez Vega JE, et al 2019 Human mesenchymal glioblastomas are characterized by an increased immune cell presence compared to proneural and classical tumors. Oncoimmunology 8:e1655360.

  66. Muto M, Baghdadi M, Maekawa R, Wada H, Seino KI. Myeloid molecular characteristics of human γδ T cells support their acquisition of tumor antigen-presenting capacity. Cancer Immunol Immunother. 2015;64:941–9.

    Article  CAS  PubMed  Google Scholar 

  67. Wakita D, Sumida K, Iwakura Y, Nishikawa H, Ohkuri T, Chamoto K, et al. Tumor-infiltrating IL-17-producing gammadelta T cells support the progression of tumor by promoting angiogenesis. Eur J Immunol. 2010;40:1927–37.

    Article  CAS  PubMed  Google Scholar 

  68. Galon J, Pagès F, Marincola FM, Angell HK, Thurin M, Lugli A, et al 2020 Cancer classification using the Immunoscore: a worldwide task force. J Transl Med 10:205.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moulay Yassine Belghali.

Ethics declarations

Ethics approval

The study was approved by the local ethic committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belghali, M.Y., Admou, B., Brahimi, M. et al. Immune tumoral microenvironment in gliomas: focus on CD3+ T cells, Vδ1+ T cells, and microglia/macrophages. Immunol Res 70, 224–239 (2022). https://doi.org/10.1007/s12026-022-09260-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-022-09260-5

Keywords

Navigation