Skip to main content

Advertisement

Log in

Exploring genetic defects in adults who were clinically diagnosed as severe combined immune deficiency during infancy

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Genetic diagnostic tools including whole-exome sequencing (WES) have advanced our understanding in human diseases and become common practice in diagnosing patients with suspected primary immune deficiencies. Establishing a genetic diagnosis is of paramount importance for tailoring adequate therapeutic regimens, including identifying the need for hematopoietic stem cell transplantation (HSCT) and genetic-based therapies. Here, we genetically studied two adult patients who were clinically diagnosed during infancy with severe combined immune deficiency (SCID). Two unrelated patients, both of consanguineous kindred, underwent WES in adulthood, 2 decades after their initial clinical manifestations. Upon clinical presentation, immunological workup was performed, which led to a diagnosis of SCID. The patients presented during infancy with failure to thrive, generalized erythematous rash, and recurrent gastrointestinal and respiratory tract infections, including episodes of Pneumocystis pneumonia infection and Candida albicans fungemia. Hypogammaglobulinemia and T-cell lymphopenia were detected. Both patients were treated with a 10/10 HLA matched sibling donor unconditioned HSCT. Retrospective genetic workup revealed homozygous bi-allelic mutations in IL7RA in one patient and in RAG2 in the other. Our study exemplifies the impact of retrospectively establishing a genetic diagnosis. Pinpointing the genetic cause raises several issues including optimized surveillance and treatment, understanding disease mechanisms and outcomes, future family planning, and social and psychological considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fischer A. Human primary immunodeficiency diseases: a perspective. Nat Immunol. 2004;1:23–30.

    Google Scholar 

  2. Seleman M, Hoyos-Bachiloglu R, Geha RS, Chou J. Uses of next-generation sequencing technologies for the diagnosis of primary immunodeficiencies. Front Immunol. 2017;8:847.

    PubMed  PubMed Central  Google Scholar 

  3. Notarangelo LD. Primary immunodeficiencies. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S182–S94.

    PubMed  Google Scholar 

  4. Kostmann R. Infantile genetic agranulocytosis (Agranulocystosis infantilis hereditaria): a new recessive lethal disease in man. Acta Paediatr. 1956;45(Suppl):1–78.

    CAS  Google Scholar 

  5. Klein C, Grudzien M, Appaswamy G, Germeshausen M, Sandrock I, Schäffer AA, et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet. 2007;39(1):86–92.

    PubMed  CAS  Google Scholar 

  6. Wiskott A. Familiärer, angeborener Morbus Werlhofii? Monatsschr Kinderheilkd. 1937;68:212–6.

    Google Scholar 

  7. Aldrich RA, Steinberg AG, Campbell DC. Pedigree demonstrating a sex-linked recessive condition characterized by draining ears, eczematoid dermatitis and bloody diarrhea. Pediatrics. 1954;13:133–9.

    PubMed  CAS  Google Scholar 

  8. Ochs HD, Rosen FS. The Wiskott Aldrich syndrome. In: Ochs HD, Smith CIE, Puck JM, editors. Primary immunodeficiency diseases: a molecular and genetic approach. New York: Oxford University Press; 1999. p. 292–305.

    Google Scholar 

  9. Thrasher AJ, Kinnon C. The Wiskott-Aldrich syndrome. Clin Exp Immunol. 2000;120:2–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Binder V, Albert MH, Kabus M, Bertone M, Meindl A, Belohradsky BH. The genotype of the original Wiskott phenotype. N Engl J Med. 2006;355(17):1790–3.

    PubMed  CAS  Google Scholar 

  11. Mahlaoui N, Warnatz K, Jones A, Workman S, Cant A. Advances in the Care of Primary Immunodeficiencies (PIDs): from Birth to Adulthood. J Clin Immunol. 2017;37(5):452–60. https://doi.org/10.1007/s10875-017-0401-y.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kwan A, Abraham RS, Currier R, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312(7):729–38.13. Broides A,.

    PubMed  PubMed Central  Google Scholar 

  13. Nahum A, Mandola AB, et al. Incidence of typically severe primary immunodeficiency diseases in consanguineous and non-consanguineous populations. J Clin Immunol. 2017;37:295–300.

    PubMed  Google Scholar 

  14. Lev A, Simon AJ, Broides A, Levi J, Garty BZ, Rosenthal E, et al. Thymic function in MHC class II-deficient patients. J Allergy Clin Immunol. 2013;131(3):831–9.

    PubMed  CAS  Google Scholar 

  15. Gomez CA, Ptaszek LM, Villa A, Bozzi F, Sobacchi C, Brooks EG, et al. Mutations in conserved regions of the predicted RAG2 kelch repeats block initiation of V(D)J recombination and result in primary immunodeficiencies. Mol Cell Biol. 2000;20(15):5653–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Tabori U, Mark Z, Amariglio N, Etzioni A, Golan H, Biloray B, et al. Detection of RAG mutations and prenatal diagnosis in families presenting with either T-B- severe combined immunodeficiency or Omenn’s syndrome. Clin Genet. 2004;65(4):322–6.

    PubMed  CAS  Google Scholar 

  17. Meshaal SS, El Hawary RE, Abd Elaziz DS, et al. Phenotypical heterogeneity in RAG-deficient patients from a highly consanguineous population. Clin Exp Immunol. 2019;195(2):202–12.

    PubMed  CAS  Google Scholar 

  18. Tirosh I, Yamazaki Y, Frugoni F, Ververs FA, Allenspach EJ, Zhang Y, et al. Recombination activity of human recombination-activating gene 2 (RAG2) mutations and correlation with clinical phenotype. J Allergy Clin Immunol. 2019;143(2):726–35.

    PubMed  CAS  Google Scholar 

  19. Greenberg-Kushnir N, Lee YN, Simon AJ, Lev A, Marcus N, Abuzaitoun O, et al. A large cohort of RAG1/2-deficient SCID patients-clinical, immunological, and prognostic analysis. J Clin Immunol. 2020;40(1):211–22.

    PubMed  CAS  Google Scholar 

  20. Simon AJ, Golan AC, Lev A, Stauber T, Barel O, Somekh I, et al. Whole exome sequencing (WES) approach for diagnosing primary immunodeficiencies (PIDs) in a highly consanguineous community. Clin Immunol. 2020;214:108376.

    PubMed  CAS  Google Scholar 

  21. Somech R. T-cell receptor excision circles in primary immunodeficiencies and other T-cell immune disorders. Curr Opin Allergy Clin Immunol. 2011;11(6):517–24.

    PubMed  CAS  Google Scholar 

  22. Buckley RH, Schiff SE, Schiff RI, Markert ML, Williams LW, Roberts JL, et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med. 1999;340(7):508–16.

    PubMed  CAS  Google Scholar 

  23. Antoine C, Müller S, Cant A, Cavazzana-Calvo M, Veys P, Vossen J, et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968-99. Lancet. 2003;361:553–60.

    PubMed  Google Scholar 

  24. Puel A, Ziegler SF, Buckley RH, et al. Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency. Nat Genet. 1998;4:394–7.

    Google Scholar 

  25. Zago CA, Jacob CM, de Albuquerque Diniz EM, et al. Autoimmune manifestations in SCID due to IL7R mutations: Omenn syndrome and cytopenias. Hum Immunol. 2014;7:662–6.

    Google Scholar 

  26. Schwarz K, Gauss GH, Ludwig L, Pannicke U, Li Z, Lindner D, et al. RAG mutations in human B cell-negative SCID. Science. 1996;274:97–9.

    PubMed  CAS  Google Scholar 

  27. Villa A, Santagata S, Bozzi F, Imberti L, Notarangelo LD. Omenn syndrome: a disorder of Rag1 and Rag2 genes. J Clin Immunol. 1999;19(2):87–97. https://doi.org/10.1023/a:1020550432126.

    Article  PubMed  CAS  Google Scholar 

  28. Cavazzana-Calvo M, Carlier F, Le Deist F, et al. Long-term T-cell reconstitution after hematopoietic stem-cell transplantation in primary T-cell-immunodeficient patients is associated with myeloid chimerism and possibly the primary disease phenotype. Blood. 2007;109:4575–81.

    PubMed  CAS  Google Scholar 

  29. Borghans JA, Bredius RG, Hazenberg MD, et al. Early determinants of long-term T-cell reconstitution after hematopoietic stem cell transplantation for severe combined immunodeficiency. Blood. 2006;108:763–9. https://doi.org/10.1182/blood-2006-01-009241.

    Article  PubMed  CAS  Google Scholar 

  30. Gennery AR, Lankester A. Long term outcome and immune function after hematopoietic stem cell transplantation for primary immunodeficiency. Front Pediatr. 2019;7:381.

    PubMed  PubMed Central  Google Scholar 

  31. Schuetz C, Neven B, Dvorak CC, Leroy S, Ege MJ, Pannicke U, et al. SCID patients with ARTEMIS vs RAG deficiencies following HCT: increased risk of late toxicity in ARTEMIS-deficient SCID [published correction appears in Blood. 2018 Dec 6;132(23):2527]. Blood. 2014;123:281–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Haddad E, Logan BR, Griffith LM, Buckley RH, Parrott RE, Prockop SE, et al. SCID genotype and 6-month posttransplant CD4 count predict survival and immune recovery. Blood. 2018;132:1737–49.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Hönig M, Albert MH, Schulz A, et al. Patients with adenosine deaminase deficiency surviving after hematopoietic stem cell transplantation are at high risk of CNS complications. Blood. 2007;109:3595–602.

    PubMed  Google Scholar 

  34. Titman P, Pink E, Skucek E, O'Hanlon K, Cole TJ, Gaspar J, et al. Cognitive and behavioral abnormalities in children after hematopoietic stem cell transplantation for severe congenital immunodeficiencies. Blood. 2008;112:3907–13.

    PubMed  CAS  Google Scholar 

  35. Tangye SG, Al-Herz W, Bousfiha A, et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020;40:24–64.

    PubMed  PubMed Central  Google Scholar 

  36. Rechavi E, Lev A, Simon AJ, Stauber T, Daas S, Saraf-Levy T, et al. First year of Israeli newborn screening for severe combined immunodeficiency-clinical achievements and insights. Front Immunol. 2017;8:1448.

    PubMed  PubMed Central  Google Scholar 

  37. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, et al. T lymphocyte directed gene therapy for ADA-SCID: initial trial results after 4 years. Science. 1995;270:475–80.

    PubMed  CAS  Google Scholar 

  38. Mamcarz E, Zhou S, Lockey T, Abdelsamed H, Cross SJ, Kang G, et al. Lentiviral gene therapy combined with low-dose busulfan in infants with SCID-X1. N Engl J Med. 2019;380:1525–34.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Kuo CY, Kohn DB. Gene therapy for the treatment of primary immune deficiencies. Curr Allergy Asthma Rep. 2016;16:39. https://doi.org/10.1007/s11882-016-0615-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Notarangelo LD, Fleisher TA. Targeted strategies directed at the molecular defect: toward precision medicine for select primary immunodeficiency disorders. J Allergy Clin Immunol. 2017;139:715–23.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Angulo I, Vadas O, Garcon F, Banham-Hall E, Plagnol V, Leahy TR, et al. Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science. 2013;342:866–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. Nat Immunol. 2014;15:88–97.

    PubMed  CAS  Google Scholar 

  43. Lucas CL, Zhang Y, Venida A, Wang Y, Hughes J, McElwee J, et al. Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K. J Exp Med. 2014;211:2537–47.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Alosaimi M, Hoenig M, Jaber F, et al. Immunodeficiency and EBV induced lymphoproliferation caused by 4-1BB deficiency. J Allergy Clin Immunol. 2019;144:574–583.e5.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Somekh I, Thian M, Medgyesi D, Gülez N, Magg T, Gallón Duque A, et al. CD137 deficiency causes immune dysregulation with predisposition to lymphomagenesis. Blood. 2019;134:1510–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Rodriguez R, Fournier B, Cordeiro DJ, Winter S, Izawa K, Martin E, et al. Concomitant PIK3CD and TNFRSF9 deficiencies cause chronic active Epstein-Barr virus infection of T cells. J Exp Med. 2019;216:2800–18.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Sznol M, Hodi FS, Margolin K, et al. Phase I study of BMS-663513, a fully human anti-CD137 agonist monoclonal antibody, in patients (pts) with advanced cancer (CA) [abstract]. J Clin Oncol. 2008;26(suppl 15):Abstract 3007.

    Google Scholar 

  48. Segal NH, Gopal AK, Bhatia S, et al. A phase 1 study of PF-05082566 (anti-4-1BB) in patients with advanced cancer [abstract]. J Clin Oncol. 2014;32(suppl 15):Abstract 3007.

    Google Scholar 

  49. Lee S, Moon JS, Lee CR, Kim HE, Baek SM, Hwang S, et al. Abatacept alleviates severe autoimmune symptoms in a patient carrying a de novo variant in CTLA-4. J Allergy Clin Immunol. 2016;137:327–30.

    PubMed  Google Scholar 

  50. Herrero-Beaumont G, Martínez Calatrava MJ, Castañeda S. Abatacept mechanism of action: concordance with its clinical profile. Reumatol Clin. 2012;8:78–83.

    PubMed  Google Scholar 

  51. Rapamune Prescribing Information" (PDF). United States Food and Drug Administration. Wyeth Pharmaceuticals, Inc. May 2015. Retrieved 28 May 2016.

Download references

Acknowledgements

We thank the families for participating in this study. We thank the Jeffrey Modell Foundation, Israel Ministry of Health, and the Israeli Science Foundation for their financial support. Prof. Raz Somech, Dr. Ayal Hendel, and Dr. Yu nee Lee gratefully acknowledge the funding support from the Israeli Science Foundation (ISF) under the Israel Precision Medicine Program (IPMP), grant agreement No. 3115/19.

Author information

Authors and Affiliations

Authors

Contributions

I.S. and R.S. conceptualized the designed study and drafted the manuscript which was reviewed and approved by all authors. R.S. treated the patients studied. A.L., A.H., Y.N.L., and A.J.S. performed and analyzed immune and genetic experiments. O.B. analyzed WES data.

Corresponding author

Correspondence to Raz Somech.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 17 kb)

ESM 2

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somekh, I., Lev, A., Barel, O. et al. Exploring genetic defects in adults who were clinically diagnosed as severe combined immune deficiency during infancy. Immunol Res 69, 145–152 (2021). https://doi.org/10.1007/s12026-021-09179-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-021-09179-3

Keywords

Navigation