Skip to main content

Advertisement

Log in

IL-21 enhances STAT3/Blimp-1 signaling pathway in B cells and contributes to plasma cell differentiation in newly diagnosed patients with myasthenia gravis

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The transcription factor Blimp-1 is necessary for the B cell differentiation toward immunoglobulin-secreting plasma cells. However, the immunopathological mechanisms of Blimp-1 that regulates B cell differentiation remain unclear in MG. The purpose of this study was to perform a quantitative and functional analysis of Blimp-1 in MG. A total of 34 patients with MG (18 ocular MG (OMG) and 16 generalized MG (GMG) and 20 healthy controls (HC) were recruited in this study. CD19+ B cells were isolated by positive selection using CD19 beads. The expression of Blimp-1 and p-STAT3 protein in isolated B cells was assessed by Western blot. Plasma cells were analyzed by flow cytometry. Serum IL-21 levels were detected by ELISA. Our data demonstrated that Blimp-1 in peripheral blood B cell of MG patients was significantly increased compared with HC. The increased expression of Blimp-1 was positively associated with clinical severity score (QMGs), plasma cell frequency, and serum IL-21 levels. Furthermore, glucocorticoid (GC) treatment reduced the expression of Blimp-1 and p-STAT3 in B cells, and this change was accompanied with relieved clinical severity, reduced plasma cell frequency, and decreased serum IL-21 levels. In vitro assay demonstrated that IL-21 stimulation upregulated STAT3 phosphorylation, increased Blimp-1 expression in B cells, and promoted plasma cell differentiation, and these processes could be inhibited by dexamethasone or STAT3 inhibitor stattic. This work indicates for the first time that aberrant expression of Blimp-1 exists on B cells and contributes to the plasma cell differentiation in MG patients. Modulation of IL-21/STAT3/Blimp-1 signaling pathway in B cells may be one of the mechanisms of glucocorticoid in the treatment of MG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meriggioli MN, Sanders DB. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol. 2009;8(5):475–90.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol. 2015;14(10):1023–36.

    PubMed  CAS  Google Scholar 

  3. Vincent A. Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol. 2002;2(10):797–804.

    PubMed  CAS  Google Scholar 

  4. Gilhus NE. Myasthenia gravis. N Engl J Med. 2016;375(26):2570–81.

    PubMed  CAS  Google Scholar 

  5. Tzartos JS. Autoantibodies to lipoprotein-related protein 4 in patients with double-seronegative myasthenia gravis. Archives of Neurology. 2012;69(4):445.

    PubMed  Google Scholar 

  6. Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat.Med. 2001;7:365–8.

    PubMed  CAS  Google Scholar 

  7. Skeie GO, Apostolski S, Evoli A, Gilhus NE, Hart IK, Harms L, et al. Guidelines for the treatment of autoimmune neuromuscular transmission disorders. Eur JNeurol. 2006;13:691–9.

    CAS  Google Scholar 

  8. Gilhus NE, Tzartos S, Evoli A, et al. Myasthenia gravis. Nat. Rev. Dis. Primers. 2019;5(1):30.

    PubMed  Google Scholar 

  9. Mantegazza R, Bernasconi P, Cavalcante P. Myasthenia gravis: from autoantibodies to therapy. Curr Opin Neurol. 2018;31(5):517–25.

    PubMed  CAS  Google Scholar 

  10. Tellier J, Nutt SL. Plasma cells: the programming of an antibody-secreting machine. Eur J Immunol. 2019;49(1):30–7.

    PubMed  CAS  Google Scholar 

  11. Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation of antibody-secreting plasma cells. Nat Rev Immunol. 2015;15:160–71.

    PubMed  CAS  Google Scholar 

  12. Zhang C-J, Gong Y, Zhu W, Qi Y, Yang C-S, Fu Y, et al. Augmentation of circulating follicular helper T cells and their impact on autoreactive B cells in myasthenia gravis. J Immunol. 2016;197(7):2610–7.

    PubMed  CAS  Google Scholar 

  13. Zhang Y, Zhang X, Xia Y, Jia X, Li H, Zhang Y, et al. CD19+ Tim-1+ B cells are decreased and negatively correlated with disease severity in myasthenia gravis patients. Immunol Res. 2016;64:1216–24.

    PubMed  CAS  Google Scholar 

  14. Yu YH, Lin KI. Factors that regulate the generation of antibody-secreting plasma cells. Adv Immunol. 2016;131:61–99.

    PubMed  CAS  Google Scholar 

  15. Kallies A, Nutt SL. Terminal differentiation of lymphocytes depends on Blimp-1. Curr Opin Immunol. 2007;19:156–62.

    PubMed  CAS  Google Scholar 

  16. Minnich M, Tagoh H, Bnelt P, et al. Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation. Nat Immunol. 2016;17(3):331–43.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Shapiro-Shelef M, Lin KI, McHeyzer-Williams LJ, et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity. 2003;19:607–20.

    PubMed  CAS  Google Scholar 

  18. Zotos D, Coquet JM, Zhang Y, et al. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J Exp Med. 2010;207:365–78.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Bryant VL, Ma CS, Avery DT, Li Y, Good KL, Corcoran LM, et al. Cytokine- mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5+ T follicular helper cells. J Immunol. 2007;179:8180–90.

    PubMed  CAS  Google Scholar 

  20. Rodriguez-Bayona B, Ramos-Amaya A, Bernal J, et al. Cutting edge: IL-21 derived from human follicular helper T cells acts as a survival factor for secondary lymphoid organ, but not for bone marrow, plasma cells. J Immunol. 2012;188:1578–81.

    PubMed  CAS  Google Scholar 

  21. Kuchen S, Robbins R, Sims GP, Sheng C, Phillips TM, Lipsky PE, et al. Essential role of IL-21 in B cell activation, expansion, and plasma cell generation during CD4+ T cell-B cell collaboration. J Immunol. 2007;179(9):5886–96.

    PubMed  CAS  Google Scholar 

  22. Rankin AL, MacLeod H, Keegan S, Andreyeva T, Lowe L, Bloom L, et al. IL-21 receptor is critical for the development of memory B cell responses. J Immunol. 2011;186:667–74.

    PubMed  CAS  Google Scholar 

  23. Linterman MA, Beaton L, Yu D, et al. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J.Exp. Med. 2010;207:353–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Nicholas A Barnes, Sophie Stephenson, Mario Cocco, et al. BLIMP-1 and STAT3 counterregulate microRNA-21 during plasma cell differentiation. J Immunol 2012; 189(1):253–260.

  25. Ding BB, Bi E, Chen H, Yu JJ, Ye BH. IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells. J Immunol. 2013;190(4):1827–36.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Diehl SA, Schmidlin H, Nagasawa M, et al. STAT3-mediated up-regulation of BLIMP1 is coordinated with BCL6 down-regulation to control human plasma cell differentiation. J Immunol. 2008;180(7):4805–15.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhou Z, Li A, Wang Z, Pei F, Xia Q, Liu G, et al. Blimp-1 siRNA inhibits B cell differentiation and prevents the development of lupus in mice. Hum Immunol. 2013;74:297–301.

    PubMed  CAS  Google Scholar 

  28. Luo J, Niu X, Zhang M, Zhang K, Chen M, Deng S. Inhibition of B lymphocyte-induced maturation protein-1 reduces the production of autoantibody and alleviates symptoms of systemic lupus erythematosus. Autoimmunity. 2015;48:80–6.

    PubMed  CAS  Google Scholar 

  29. Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet. Nov. 2009;41:1234–7.

    PubMed  CAS  Google Scholar 

  30. Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, Sun X, et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet. 2009;41:1228–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Bankó Z, Pozsgay J, Szili D, Tóth M, Gáti T, Nagy G, et al. Induction and differentiation of IL-10-producing regulatory B cells from healthy blood donors and rheumatoid arthritis patients. J Immunol. 2017;198:1512–20.

    PubMed  Google Scholar 

  32. Kim SJ, Goldstein J, Dorso K, Merad M, Mayer L, Crawford JM, et al. Expression of Blimp-1 in dendritic cells modulates the innate inflammatory response in dextran sodium sulfate-induced colitis. Mol Med. 2015;20:707–19.

    PubMed  PubMed Central  Google Scholar 

  33. Aqel SI, Granitto MC, Nuro-Gyina PK, Pei W, Liu Y, Lovett-Racke AE, et al. Distinct roles for Blimp-1 in autoreactive CD4 T cells during priming and effector phase of autoimmune encephalomyelitis. J Neuroimmunol. 2018;325:20–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Lin MH, Chou FC, Yeh LT, Fu SH, Chiou HYC, Lin KI, et al. B lymphocyte-induced maturation protein 1 (BLIMP-1) attenuates autoimmune diabetes in NOD mice by suppressing Th1 and Th17 cells. Diabetologia. 2013;56:136–46.

    PubMed  CAS  Google Scholar 

  35. Benevides L, Costa RS, Tavares LA, Russo M, Martins GA, da Silva LLP, et al. B lymphocyte-induced maturation protein 1 controls TH9 cell development, IL-9 production, and allergic inflammation. J Allergy Clin Immunol. 2019;143:1119–30.

    PubMed  CAS  Google Scholar 

  36. Drachman DB. Medical progress: myasthenia gravis. N Engl J Med. 1994;330:1797–810.

    PubMed  CAS  Google Scholar 

  37. Jaretzki A, Barohn RJ, Ernstoff RM, et al. Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. 2000;55:16–23.

    Google Scholar 

  38. Swadhinya A, Nosé Brent D, Gauthaman S, et al. Intrinsic plasma cell differentiation defects in B cell expansion with NF-κB and T cell anergy patient B cells. Front Immunol. 2017;8:913.

    Google Scholar 

  39. Wu XN, Ye YX, Niu JW, et al. Defective PTEN regulation contributes to B cell hyperresponsiveness in systemic lupus erythematosus. ence Translational Medicine. 2014;6(246):246ra99.

    Google Scholar 

  40. Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids–new mechanisms for old drugs. N Engl J Med. 2005;353:1711–23.

    PubMed  CAS  Google Scholar 

  41. Fu SH, Yeh LT, Chu CC, Yen BLJ, Sytwu HK. New insights into Blimp-1 in T lymphocytes: a divergent regulator of cell destiny and effector function. J Biomed Sci. 2017;24:49.

    PubMed  PubMed Central  Google Scholar 

  42. Ragheb S, Lisak RP. Phenotypic and functional abnormalities of B cells in myasthenia gravis. Ann N Y Acad Sci. 1993;681:256–63.

    PubMed  CAS  Google Scholar 

  43. Vander Heiden JA, Stathopoulos P, Zhou JQ, Chen L, Gilbert TJ, Bolen CR, et al. Dysregulation of B cell repertoire formation in myasthenia gravis patients revealed through deep sequencing. J Immunol. 2017;198:1460–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Hocaoğlu M, Durmuş H, Özkan B, Yentür SP, Doğan Ö, Parman Y, et al. Increased costimulatory molecule expression of thymic and peripheral B cells and a sensitivity to IL-21 in myasthenia gravis. J Neuroimmunol. 2018;323:36–42.

    PubMed  Google Scholar 

  45. Tangye ML. SG2 cytokine-mediated regulation of plasma cell generation: IL-21 takes center stage. Front Immunol. 2014;5:65.

    PubMed  PubMed Central  Google Scholar 

  46. Long D, Chen Y, Wu H, Zhao M, Lu Q. Clinical significance and immunobiology of IL-21 in autoimmunity. J Autoimmun. 2019;99:1–14.

    PubMed  CAS  Google Scholar 

  47. Good KL, Bryant VL, Tangye SG. Kinetics of human B cell behavior and amplification of proliferative responses following stimulation with IL-21. J Immunol. 2006;177:5236–47.

    PubMed  CAS  Google Scholar 

  48. Leonard WJ. Cytokines and immunodeficiency diseases. Nat Rev Immunol. 2001;1:200–8.

    PubMed  CAS  Google Scholar 

  49. Diehl SA, Schmidlin H, Nagasawa M, van Haren SD, Kwakkenbos MJ, Yasuda E, et al. STAT3-mediated up-regulation of BLIMP1 is coordinated with BCL6 down-regulation to control human plasma cell differentiation. J Immunol. 2008;180:4805–15.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Kwon H, Thierry-Mieg D, Thierry-Mieg J, Kim H-P, Oh J, Tunyaplin C, et al. Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity. 2009;31:941–52.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Fagerli UM, Ullrich K, Stühmer T, Holien T, Köchert K, Holt RU, et al. Serum/glucocorticoid-regulated kinase 1 (SGK1) is a prominent target gene of the transcriptional response to cytokines in multiple myeloma and supports the growth of myeloma cells. Oncogene. 2011;30:3198–206.

    PubMed  CAS  Google Scholar 

  52. Li Y, Rauniyar VK, Yin WF, Hu B, Ouyang S, Xiao B, et al. IL-21 levels decrease with glucocorticoid treatment in myasthenia gravis. Neurol Sci. 2014;35:29–34.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the Fifth Phase “333 Project” Scientific Research Subsidy Project in Jiangsu Province (BRA2018395), the National Nature Science Foundation of China (81072465, 81571579), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX20_0928), the Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province (201610313038Y), the Key Medical Talents Fund of Jiangsu Province (H201130), and the Jiangsu Province Ordinary University Postgraduate Research Innovation Fund (CXLX11_0734).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Zhang or Linlin Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The Ethics Committee of Affiliated Hospital of Xuzhou Medical University approved the study protocol.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 5630 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Huang, X., Li, F. et al. IL-21 enhances STAT3/Blimp-1 signaling pathway in B cells and contributes to plasma cell differentiation in newly diagnosed patients with myasthenia gravis. Immunol Res 69, 59–70 (2021). https://doi.org/10.1007/s12026-020-09164-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-020-09164-2

Keywords

Navigation