Skip to main content

Advertisement

Log in

The role of competing mechanisms on Lck regulation

  • Review
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Lck is a Src-related protein tyrosine kinase that associates with CD4 and CD8 molecules and is essential to T cell development and T cell activation. Regulatory mechanisms of Lck are diverse and controversy exists regarding the importance of each mechanism. The balance of phosphorylation at the inhibitory and activating Tyr residues is maintained by a balance between CD45 and Csk and is dependent upon intact intracellular trafficking machinery. Current evidence shows that lipid-binding changes depending on Lck conformation and that phosphorylation-induced conformational changes in Lck modulate its kinase activity potentially through regulation of Lck clustering at the plasma membrane. Downstream regulators such as ZAP-70 mediate negative feedback that is dependent on Tyr192 phosphorylation. This review examines the diverse regulation of Lck in detail, highlighting the role of each mechanism on maintaining an appropriate amount of Lck in each conformational state, thus allowing for an efficient, appropriate, and controlled amount of T cell activation following TCR stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Philipsen L, Reddycherla AV, Hartig R, et al. De novo phosphorylation and conformational opening of the tyrosine kinase Lck act in concert to initiate T cell receptor signaling. Sci Signal. 2017;10:eaaf4736.

  2. Hui E, Vale RD. In vitro membrane reconstitution of the T-cell receptor proximal signaling network. Nat Struct Mol Biol. 2014;21:133–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Nika K, Soldani C, Salek M, et al. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity. 2010;32:766–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Furlan G, Minowa T, Hanagata N, Kataoka-Hamai C, Kaizuka Y. Phosphatase CD45 both positively and negatively regulates T cell receptor phosphorylation in reconstituted membrane protein clusters. J Biol Chem. 2014;289:28514–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Schoenborn JR, Tan YX, Zhang C, Shokat KM, Weiss A. Feedback circuits monitor and adjust basal Lck-dependent events in T cell receptor signaling. Sci Signal. 2011;4:ra59.

    PubMed  PubMed Central  Google Scholar 

  6. Xu Z, Weiss A. Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nat Immunol. 2002;3:764–71.

    CAS  PubMed  Google Scholar 

  7. Majeti R, Xu Z, Parslow TG, et al. An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell. 2000;103:1059–70.

    CAS  PubMed  Google Scholar 

  8. Majeti R, Bilwes AM, Noel JP, Hunter T, Weiss A. Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge. Science. 1998;279:88–91.

    CAS  PubMed  Google Scholar 

  9. Dornan S, Sebestyen Z, Gamble J, et al. Differential association of CD45 isoforms with CD4 and CD8 regulates the actions of specific pools of p56lck tyrosine kinase in T cell antigen receptor signal transduction. J Biol Chem. 2002;277:1912–8.

    CAS  PubMed  Google Scholar 

  10. D’Oro U, Sakaguchi K, Appella E, Ashwell JD. Mutational analysis of Lck in CD45-negative T cells: dominant role of tyrosine 394 phosphorylation in kinase activity. Mol Cell Biol. 1996;16:4996–5003.

    PubMed  PubMed Central  Google Scholar 

  11. Zikherman J, Jenne C, Watson S, et al. CD45-Csk phosphatase-kinase titration uncouples basal and inducible T cell receptor signaling during thymic development. Immunity. 2010;32:342–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. McNeill L, Salmond RJ, Cooper JC, et al. The differential regulation of Lck kinase phosphorylation sites by CD45 is critical for T cell receptor signaling responses. Immunity. 2007;27:425–37.

    CAS  PubMed  Google Scholar 

  13. Bijlmakers MJE, Isobe-Nakamura M, Ruddock LJ, Marsh M. Intrinsic signals in the unique domain target p56lck to the plasma membrane independently of CD4. J Cell Biol. 1997;137:1029–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Casas J, Brzostek J, Zarnitsyna VI, et al. Ligand-engaged TCR is triggered by Lck not associated with CD8 coreceptor. Nat Commun. 2014;5:5624.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Stephen TL, Wilson BS, Laufer TM. Subcellular distribution of Lck during CD4 T-cell maturation in the thymic medulla regulates the T-cell activation threshold. Proc Natl Acad Sci U S A. 2012;109:7415–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM. Direct observation of ligand recognition by T cells. Nature. 2002;419:845–9.

    CAS  PubMed  Google Scholar 

  17. Van Laethem F, Sarafova SD, Park J, et al. Deletion of CD4 and CD8 coreceptors permits generation of alphabetaT cells that recognize antigens independently of the MHC. Immunity. 2007;27:735–50.

    PubMed  Google Scholar 

  18. Shaw AS, Chalupny J, Whitney JA, et al. Short related sequences in the cytoplasmic domains of CD4 and CD8 mediate binding to the amino-terminal domain of the p56lck tyrosine protein kinase. Mol Cell Biol. 1990;10:1853–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Turner JM, Brodsky MH, Irving BA, Levin SD, Perlmutter RM, Littman DR. Interaction of the unique N-terminal region of tyrosine kinase p56lck with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs. Cell. 1990;60:755–65.

    CAS  PubMed  Google Scholar 

  20. Sheng R, Jung D, Silkov A, et al. Lipids regulate Lck protein activity through their interactions with the Lck Src homology 2 domain. J Biol Chem. 2016;291:17639–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Li L, Guo X, Shi X, et al. Ionic CD3−Lck interaction regulates the initiation of T-cell receptor signaling. PNAS. 2017;114:E5891–9.

    CAS  PubMed  Google Scholar 

  22. Rossy J, Owen DM, Williamson DJ, Yang Z, Gaus K. Conformational states of the kinase Lck regulate clustering in early T cell signaling. Nat Immunol. 2013;14:82–9.

    CAS  PubMed  Google Scholar 

  23. Soares H, Henriques R, Sachse M, et al. Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse. J Exp Med. 2013;210:2415–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bouchet J, Del Río-Iñiguez I, Vázquez-Chávez E, et al. Rab11-FIP3 regulation of Lck endosomal traffic controls TCR signal transduction. J Immunol. 2017;198:2967–78.

    CAS  PubMed  Google Scholar 

  25. Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol. 2003;4:202–12.

    CAS  PubMed  Google Scholar 

  26. Pfisterer K, Forster F, Paster W, et al. The late endosomal transporter CD222 directs the spatial distribution and activity of Lck. J Immunol. 2014;193:2718–32.

    CAS  PubMed  Google Scholar 

  27. Gorska MM, Liang Q, Karim Z, Alam R. Uncoordinated 119 protein controls trafficking of Lck via the Rab11 endosome and is critical for immunological synapse formation. J Immunol. 2009;183:1675–84.

    CAS  PubMed  Google Scholar 

  28. Gorska MM, Alam R. A mutation in the human uncoordinated 119 gene impairs TCR signaling and is associated with CD4 lymphopenia. Blood. 2012;119:1399–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Andrés-Delgado L, Antón OM, Madrid R, Byrne JA, Alonso MA. Formin INF2 regulates MAL-mediated transport of Lck to the plasma membrane of human T lymphocytes. Blood. 2010;116:5919–29.

    PubMed  Google Scholar 

  30. Antón OM, Andrés-Delgado L, Reglero-Real N, Batista A, Alonso MA. MAL protein controls protein sorting at the supramolecular activation cluster of human T lymphocytes. J Immunol. 2011;186:6345–56.

    PubMed  Google Scholar 

  31. Stephen LA, ElMaghloob Y, McIlwraith MJ, et al. The ciliary machinery is repurposed for T cell immune synapse trafficking of Lck. Dev Cell. 2018;47:122,132.e4.

    Google Scholar 

  32. Couture C, Songyang Z, Jascur T, et al. Regulation of the Lck SH2 domain by tyrosine phosphorylation. J Biol Chem. 1996;271:24880–4.

    CAS  PubMed  Google Scholar 

  33. Liu BA, Jablonowski K, Raina M, Arcé M, Pawson T, Nash PD. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol Cell. 2006;22:851–68.

    PubMed  Google Scholar 

  34. Granum S, Sundvold-Gjerstad V, Gopalakrishnan RP, et al. The kinase Itk and the adaptor TSAd change the specificity of the kinase Lck in T cells by promoting the phosphorylation of Tyr192. Sci Signal. 2014;7:ra118.

    PubMed  Google Scholar 

  35. Goodfellow HS, Frushicheva MP, Ji Q, et al. The catalytic activity of the kinase ZAP-70 mediates basal signaling and negative feedback of the T cell receptor pathway. Sci Signal. 2015;8:ra49.

    PubMed  PubMed Central  Google Scholar 

  36. Courtney AH, Amacher JF, Kadlecek TA, et al. A phosphosite within the SH2 domain of Lck regulates its activation by CD45. Mol Cell. 2017;67:498,511.e6.

    Google Scholar 

  37. Cao L, Ding Y, Hung N, et al. Quantitative phosphoproteomics reveals SLP-76 dependent regulation of PAG and Src family kinases in T cells. PLoS ONE. 2012;7:e46725.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Helou YA, Petrashen AP, Salomon AR. Vav1 regulates T-cell activation through a feedback mechanism and crosstalk between the T-cell receptor and CD28. J Proteome Res. 2015;14:2963–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Belmont J, Gu T, Mudd A, Salomon AR. A PLC-γ1 feedback pathway regulates Lck substrate phosphorylation at the T-cell receptor and SLP-76 complex. J Proteome Res. 2017;16:2729–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chapman NM, Connolly SF, Reinl EL, Houtman JCD. Focal adhesion kinase negatively regulates Lck function downstream of the T cell antigen receptor. J Immunol. 2013;191:6208–21.

    CAS  PubMed  Google Scholar 

  41. Helou YA, Nguyen V, Beik SP, Salomon AR. ERK positive feedback regulates a widespread network of tyrosine phosphorylation sites across canonical T cell signaling and actin cytoskeletal proteins in Jurkat T cells. PLoS ONE. 2013;8:e69641.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chiang GG, Sefton BM. Specific dephosphorylation of the Lck tyrosine protein kinase at Tyr-394 by the SHP-1 protein-tyrosine phosphatase. J Biol Chem. 2001;276:23173–8.

    CAS  PubMed  Google Scholar 

  43. Winkler DG, Park I, Kim T, et al. Phosphorylation of Ser-42 and Ser-59 in the N-terminal region of the tyrosine kinase p56lck. Proc Natl Acad Sci U S A. 1993;90:5176–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Stefanová I, Hemmer B, Vergelli M, Martin R, Biddison WE, Germain RN. TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat Immunol. 2003;4:248–54.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabin J. Bozso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozso, S.J., Kang, J.J.H. & Nagendran, J. The role of competing mechanisms on Lck regulation. Immunol Res 68, 289–295 (2020). https://doi.org/10.1007/s12026-020-09148-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-020-09148-2

Keywords

Navigation