Skip to main content

Advertisement

Log in

Promotion on NLRC5 upregulating MHC-I expression by IFN-γ in MHC-I–deficient breast cancer cells

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Breast cancer is the most dominant cancer in women and the second most frequent cancer in the general population worldwide. NLRC5 critically transactivates MHC class I (classically HLA-ABC in human) which is crucial for cancer immunosurveillance. But the expressional and functional impairments of NLRC5 have been found in many cancers as a major mechanism of immune evasion. Promotion of NLRC5 with the enhancement of MHC class I contributes to cancer immunotherapy and counteraction against cancer immune evasion. In many cancers, IFN-γ promotes the expression of MHC class I involving NLRC5; however, it is unclear in breast cancer cells. In this study, qRT-PCR, western blot, and flow cytometry were used to detect the mRNAs and proteins of NLRC5, β2m, and HLA-ABC in MHC class I–deficient human SKBR3 breast cancer cells after IFN-γ treatment. It was shown that the relative levels of NLRC5 mRNA, β2m mRNA, and HLA-ABC α heavy chain mRNA, in concentrations of 50 U/ml and 100 U/ml IFN-γ groups, were statistically increased (p < 0.05) with dose dependent tendency compared with the control group. The protein levels of NLRC5 and β2m in concentrations of 50 U/ml and 100 U/ml IFN-γ groups, HLA-ABC (positive rates) in different concentrations of IFN-γ groups, were statistically increased (p < 0.05), with dose dependent tendency for NLRC5 and HLA-ABC, compared with the control group. Promotion of NLRC5 by IFN-γ with upregulation of MHC class I (HLA-ABC) in SKBR3 breast cancer cells, suggesting the contribution to counteracting cancer evasion from immunosurveillance and benefiting cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jacob L, Kalder M, Haas G, Kostev K. Are data from general practices suitable for survival analyses in the field of breast cancer? A retrospective study conducted in the United Kingdom, France and Germany. Mol Clin Oncol. 2019;11(2):177–80.

    PubMed  PubMed Central  Google Scholar 

  2. Ebadi MR, Aghdam MK, Lima ZS, Younesi L. Investigation into breast cancer and partial breast reconstruction: a review. Eur J Transl Myol. 2019;29(2):8157.

    PubMed  PubMed Central  Google Scholar 

  3. Song H, Liu A, Liu G, Wu F, Li Z. T follicular regulatory cells suppress Tfh-mediated B cell help and synergistically increase IL-10-producing B cells in breast carcinoma. Immunol Res. 2019;67:416–23. https://doi.org/10.1007/s12026-019-09090-y. [Epub ahead of print].

    Article  PubMed  CAS  Google Scholar 

  4. Samiei H, Sadighi-Moghaddam B, Mohammadi S, Gharavi A, Abdolmaleki S, Khosravi A, et al. Dysregulation of helper T lymphocytes in esophageal squamous cell carcinoma (ESCC) patients is highly associated with aberrant production of miR-21. Immunol Res. 2019;67(2–3):212–22.

    PubMed  CAS  Google Scholar 

  5. Lu J, Sun LX, Lin ZB, Duan XS, Ge ZH, Xing EH, et al. Antagonism by Ganoderma lucidum polysaccharides against the suppression by culture supernatants of B16F10 melanoma cells on macrophage. Phytother Res. 2014;28(2):200–6.

    PubMed  CAS  Google Scholar 

  6. Zahran AM, Zahran ZAM, El-Badawy O, Abdel-Rahim MH, Ali WAM, Rayan A, et al. Prognostic impact of toll-like receptors 2 and 4 expression on monocytes in Egyptian patients with hepatocellular carcinoma. Immunol Res. 2019;67(2–3):157–65.

    PubMed  Google Scholar 

  7. Wosik J, Suarez-Villagran M, Miller JH Jr, Ghobrial RM, Kloc M. Macrophage phenotype bioengineered by magnetic, genetic, or pharmacologic interference. Immunol Res. 2019;67(1):1–11.

    PubMed  Google Scholar 

  8. Ibrahimi M, Moossavi M, Mojarad EN, Musavi M, Mohammadoo-Khorasani M, Shahsavari Z. Positive correlation between interleukin-1 receptor antagonist gene 86bp VNTR polymorphism and colorectal cancer susceptibility: a case-control study. Immunol Res. 2019;67(1):151–6.

    PubMed  Google Scholar 

  9. Planes-Laine G, Rochigneux P, Bertucci F, Chrétien AS, Viens P, Sabatier R, et al. PD-1/PD-L1 targeting in breast cancer: the first clinical evidences are emerging. A literature review. Cancers (Basel). 2019;11(7):E1033.

    Google Scholar 

  10. Wu Y, Shi T, Li J. NLRC5: a paradigm for NLRs in immunological and inflammatory reaction. Cancer Lett. 2019;451:92–9.

    PubMed  CAS  Google Scholar 

  11. Benkő S, Kovács EG, Hezel F, Kufer TA. NLRC5 functions beyond MHC I regulation-what do we know so far? Front Immunol. 2017;8:150.

    PubMed  PubMed Central  Google Scholar 

  12. Chelbi ST, Dang AT, Guarda G. Emerging major histocompatibility complex class I-related functions of NLRC5. Adv Immunol. 2017;133:89–119.

    PubMed  CAS  Google Scholar 

  13. Vijayan S, Sidiq T, Yousuf S, van den Elsen PJ, Kobayashi KS. Class I transactivator, NLRC5: a central player in the MHC class I pathway and cancer immune surveillance. Immunogenetics. 2019;71(3):273–82.

    PubMed  Google Scholar 

  14. Yoshihama S, Roszik J, Downs I, Meissner TB, Vijayan S, Chapuy B, et al. NLRC5/MHC class I transactivator is a target for immune evasion in cancer. Proc Natl Acad Sci U S A. 2016;113(21):5999–6004.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017;8(1):1136.

    PubMed  PubMed Central  Google Scholar 

  16. Moritz A, Anjanappa R, Wagner C, Bunk S, Hofmann M, Pszolla G, et al. High-throughput peptide-MHC complex generation and kinetic screenings of TCRs with peptide-receptive HLA-A*02:01 molecules. Sci Immunol. 2019;4(37):eaav0860.

    PubMed  CAS  Google Scholar 

  17. Penny SA, Malaker SA. Isolation of major histocompatibility complex (MHC)-associated peptides by immunoaffinity purification. Methods Mol Biol. 2019;2024:235–43.

    PubMed  Google Scholar 

  18. Inoue M, Mimura K, Izawa S, Shiraishi K, Inoue A, Shiba S, et al. Expression of MHC class I on breast cancer cells correlates inversely with HER2 expression. Oncoimmunology. 2012;1(7):1104–10.

    PubMed  PubMed Central  Google Scholar 

  19. Yoshihama S, Vijayan S, Sidiq T, Kobayashi KS. NLRC5/CITA: a key player in cancer immune surveillance. Trends Cancer. 2017;3(1):28–38.

    PubMed  PubMed Central  Google Scholar 

  20. Khedri M, Abnous K, Rafatpanah H, Ramezani M. An optimized protocol for the in vitro generation and functional analysis of human PD1/PD-L1 signal. J Recept Signal Transduct Res. 2018;38(1):31–6.

    PubMed  CAS  Google Scholar 

  21. van den Elsen PJ, Holling TM, Kuipers HF, van der Stoep N. Transcriptional regulation of antigen presentation. Curr Opin Immunol. 2004;16(1):67–75.

    PubMed  Google Scholar 

  22. Tong Y, Cui J, Li Q, Zou J, Wang HY, Wang RF. Enhanced TLR-induced NF-κB signaling and type I interferon responses in NLRC5deficient mice. Cell Res. 2012;22(5):822–35.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Chaganty BK, Lu Y, Qiu S, Somanchi SS, Lee DA, Fan Z. Trastuzumab upregulates expression of HLA-ABC and T cell costimulatory molecules through engagement of natural killer cells and stimulation of IFNγ secretion. Oncoimmunology. 2015;5(4):e1100790.

    PubMed  PubMed Central  Google Scholar 

  24. Maruyama T, Mimura K, Sato E, Watanabe M, Mizukami Y, Kawaguchi Y, et al. Inverse correlation of HER2 with MHC class I expression on oesophageal squamous cell carcinoma. Br J Cancer. 2010;103(4):552–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Oliveras-Ferraros C, Cufí S, Vazquez-Martin A, Menendez OJ, Bosch-Barrera J, Martin-Castillo B, et al. Metformin rescues cell surface major histocompatibility complex class I (MHC-I) deficiency caused by oncogenic transformation. Cell Cycle. 2012;11(5):865–70.

    PubMed  CAS  Google Scholar 

  26. Wilson EA, Anderson KS. Lost in the crowd: identifying targetable MHC class I neoepitopes for cancer immunotherapy. Expert Rev Proteomics. 2018;15(12):1065–77.

    PubMed  CAS  Google Scholar 

  27. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.

    PubMed  Google Scholar 

  28. Mandal R, Chan TA. Personalized oncology meets immunology: the path toward precision immunotherapy. Cancer Discov. 2016;6(7):703–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Palucka AK, Coussens LM. The basis of oncoimmunology. Cell. 2016;164(6):1233–47.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 2016;375(18):1767–78.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Carretero-González A, Lora D, Ghanem I, Zugazagoitia J, Castellano D, Sepúlveda JM, et al. Analysis of response rate with ANTI PD1/PD-L1 monoclonal antibodies in advanced solid tumors: a meta-analysis of randomized clinical trials. Oncotarget. 2018;9(9):8706–15.

    PubMed  PubMed Central  Google Scholar 

  32. Rodig SJ, Gusenleitner D, Jackson DG, Gjini E, Giobbie-Hurder A, Jin C, et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci Transl Med. 2018;10(450):eaar3342.

    PubMed  Google Scholar 

  33. Kuenzel S, Till A, Winkler M, Häsler R, Lipinski S, Jung S, et al. The nucleotide-binding oligomerization domain-like receptor NLRC5 is involved in IFN-dependent antiviral immune responses. J Immunol. 2010;184(4):1990–2000.

    PubMed  CAS  Google Scholar 

  34. Neerincx A, Lautz K, Menning M, Kremmer E, Zigrino P, Hösel M, et al. A role for the human nucleotide-binding domain, leucine-rich repeat-containing family member NLRC5 in antiviral responses. J Biol Chem. 2010;285(34):26223–32.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Downs I, Vijayan S, Sidiq T, Kobayashi KS. CITA/NLRC5: a critical transcriptional regulator of MHC class I gene expression. Biofactors. 2016;42(4):349–57.

    PubMed  CAS  Google Scholar 

  36. Neerincx A, Jakobshagen K, Utermöhlen O, Büning H, Steimle V, Kufer TA. The N-terminal domain of NLRC5 confers transcriptional activity for MHC class I and II gene expression. J Immunol. 2014;193(6):3090–100.

    PubMed  CAS  Google Scholar 

  37. Benko S, Magalhaes JG, Philpott DJ, Girardin SE. NLRC5 limits the activation of inflammatory pathways. J Immunol. 2010;185(3):1681–91.

    PubMed  CAS  Google Scholar 

  38. Cui J, Zhu L, Xia X, Wang HY, Legras X, Hong J, et al. NLRC5 negatively regulates the NF-kappa B and type I interferon signaling pathways. Cell. 2010;141(3):483–96.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Gutte PG, Jurt S, Grütter MG, Zerbe O. Unusual structural features revealed by the solution NMR structure of the NLRC5caspase recruitment domain. Biochemistry. 2014;53(19):3106–17.

    PubMed  CAS  Google Scholar 

  40. Ludigs K, Seguín-Estévez Q, Lemeille S, Ferrero I, Rota G, Chelbi S, et al. NLRC5 exclusively transactivates MHC class I and related genes through a distinctive SXY module. PLoS Genet. 2015;11(3):e1005088.

    PubMed  PubMed Central  Google Scholar 

  41. Meissner TB, Li A, Biswas A, Lee KH, Liu YJ, Bayir E, et al. NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci U S A. 2010;107(31):13794–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Chelbi ST, Guarda G. NLRC5, a promising new entry in tumor immunology. J Immunother Cancer. 2016;4:39.

    PubMed  PubMed Central  Google Scholar 

  43. Albrecht M, Takken FL. Update on the domain architectures of NLRs and R proteins. Biochem Biophys Res Commun. 2006;339(2):459–62.

    PubMed  CAS  Google Scholar 

  44. Bernal M, Ruiz-Cabello F, Concha A, Paschen A, Garrido F. Implication of the β2-microglobulin gene in the generation of tumor escape phenotypes. Cancer Immunol Immunother. 2012;61(9):1359–71.

    PubMed  Google Scholar 

  45. Yang J, Yi Q. Killing tumor cells through their surface beta(2)-microglobulin or major histocompatibility complex class I molecules. Cancer. 2010;116(7):1638–45.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Bjorkman PJ, Burmeister WP. Structures of two classes of MHC molecules elucidated: crucial differences and similarities. Curr Opin Struct Biol. 1994;4(6):852–6.

    PubMed  CAS  Google Scholar 

  47. Benitez R, Godelaine D, Lopez-Nevot MA, Brasseur F, Jiménez P, Marchand M, et al. Mutations of the beta2-microglobulin gene result in a lack of HLA class I molecules on melanoma cells of two patients immunized with MAGE peptides. Tissue Antigens. 1998;52(6):520–9.

    PubMed  CAS  Google Scholar 

  48. Pérez B, Benitez R, Fernández MA, Oliva MR, Soto JL, Serrano S, et al. A new beta 2 microglobulin mutation found in a melanoma tumor cell line. Tissue Antigens. 1999;53(6):569–72.

    PubMed  Google Scholar 

  49. Paschen A, Méndez RM, Jimenez P, Sucker A, Ruiz-Cabello F, Song M, et al. Complete loss of HLA class I antigen expression on melanoma cells: a result of successive mutational events. Int J Cancer. 2003;103(6):759–67.

    PubMed  CAS  Google Scholar 

  50. Siddle HV, Kreiss A, Tovar C, Yuen CK, Cheng Y, Belov K, et al. Reversible epigenetic down-regulation of MHC molecules by devil facial tumour disease illustrates immune escape by a contagious cancer. Proc Natl Acad Sci U S A. 2013;110(13):5103–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Chiou SJ, Chen CH. Decipher β2-microglobulin: gain- or loss-of-function (a mini-review). Med Sci Monit Basic Res. 2013;19:271–3.

    PubMed  PubMed Central  Google Scholar 

  52. Solheim JC, Johnson NA, Carreno BM, Lie WR, Hansen TH. Beta 2-microglobulin with an endoplasmic reticulum retention signal increases the surface expression of folded class I major histocompatibility complex molecules. Eur J Immunol. 1995;25(11):3011–6.

    PubMed  CAS  Google Scholar 

  53. Sommer S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool. 2005;2:16.

    PubMed  PubMed Central  Google Scholar 

  54. Rock KL, Reits E, Neefjes J. Present yourself! By MHC class I and MHC class II molecules. Trends Immunol. 2016;37(11):724–37.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. 2006;24:419–66.

    PubMed  CAS  Google Scholar 

  56. Baldeon ME, Neece DJ, Nandi D, Monaco JJ, Gaskins HR. Interferon-gamma independently activates the MHC class I antigen processing pathway and diminishes glucose responsiveness in pancreatic beta-cell lines. Diabetes. 1997;46:770–8.

    PubMed  CAS  Google Scholar 

  57. Geiser AG, Letterio JJ, Kulkarni AB, Karlsson S, Roberts AB, Sporn MB. Transforming growth factor beta 1 (TGF-beta 1) controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-beta 1 null mouse phenotype. Proc Natl Acad Sci U S A. 1993;90:9944–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Israel A, Lebail O, Hatat D, et al. TNF stimulates expression of mouse MHC class I genes by inducing an NF kappa B-like enhancer binding activity which displaces constitutive factors. EMBO J. 1989;8:3793–800.

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Shi B, Thomas AJ, Benninghoff AD, Sessions BR, Meng Q, Parasar P, et al. Genetic and epigenetic regulation of major histocompatibility complex class I gene expression in bovine trophoblast cells. Am J Reprod Immunol. 2018;79:e12779.

    Google Scholar 

  60. Gobin SJP, Keijsers V, van Zutphen M, van den Elsen PJ. The role of enhancer A in the locus-specific transactivation of classical and nonclassical HLA class I genes by nuclear factor kappa B. J Immunol. 1998;161:2276–83.

    PubMed  CAS  Google Scholar 

  61. Gobin SJP, van Zutphen M, Woltman AM, van den Elsen PJ. Transactivation of classical and nonclassical HLA class I genes through the IFN-stimulated response element. J Immunol. 1999;163:1428–34.

    PubMed  CAS  Google Scholar 

  62. Gobin SJP, Peijnenburg A, van Eggermond M, van Zutphen N, van den Berg R, van den Elsen PJ. The RFX complex is crucial for the constitutive and CIITA-mediated transactivation of MHC class I and beta(2)-microglobulin genes. Immunity. 1998;9:531–41.

    PubMed  CAS  Google Scholar 

  63. Gobin SJP, van Zutphen M, Westerheide SD, Boss JM, van den Elsen PJ. The MHC-specific enhanceosome and its role in MHC class I and beta(2)-microglobulin gene transactivation. J Immunol. 2001;167:5175–84.

    PubMed  CAS  Google Scholar 

  64. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75:163–89.

    PubMed  CAS  Google Scholar 

  65. Marijt KA, Sluijter M, Blijleven L, Tolmeijer SH, Scheeren FA, van der Burg SH, et al. Metabolic stress in cancer cells induces immune escape through a PI3K-dependent blockade of IFNγ receptor signaling. J Immunother Cancer. 2019;7:152.

    PubMed  PubMed Central  Google Scholar 

  66. Oliveira CC, van Hall T. Importance of TAP-independent processing pathways. Mol Immunol. 2013;55(2):113–6.

    PubMed  CAS  Google Scholar 

  67. Liu C, Fu H, Flutter B, Powis SJ, Gao B. Suppression of MHC class I surface expression by calreticulin’s P-domain in a calreticulin deficient cell line. Biochim Biophys Acta. 2010;1803(5):544–52.

    PubMed  CAS  Google Scholar 

  68. Burr ML, Boname JM, Lehner PJ. Studying molecules. Methods Mol Biol. 2013;960:109–25.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Xin Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, MZ., Sun, Y., Jiang, XF. et al. Promotion on NLRC5 upregulating MHC-I expression by IFN-γ in MHC-I–deficient breast cancer cells. Immunol Res 67, 497–504 (2019). https://doi.org/10.1007/s12026-019-09111-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-019-09111-w

Keywords

Navigation