Skip to main content

Advertisement

Log in

Human neutrophil peptide-1 decreases during ageing in selected Mexican population

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Antimicrobial peptide innate immunity plays a central role in the susceptibility to infectious diseases, as has been described extensively in different settings. However, the role that these molecules play in the immunity mediated by polymorphonuclear phagocytes as part of the innate immunity of ageing individuals has not been described. In the present study, we addressed the question whether antimicrobial activity in polymorphonuclear cells from elderly individuals was altered in comparison with young adults. We compared phagocytosis index, bacterial killing efficiency, myeloperoxidase activity and cathelicidin expression. Results showed that there were no statistical differences among groups. However, human neutrophil peptide-1 (HNP-1) was decreased in the elderly individuals group. Results suggest that the decreased HNP-1 production in the polymorphonuclear phagocytes form elderly individuals might have an important participation in the increased susceptibility to infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. World Health Organization. World Health Day 2012: ageing and health: toolkit for event organizers. Geneva: World Health Organization; 2012.

    Google Scholar 

  2. Weiskopf D, Weinberger B, Grubeck-Loebenstein B. The aging of the immune system. Transpl Int. 2009;22(11):1041–50.

    Article  CAS  PubMed  Google Scholar 

  3. Appay V, Sauce D, Prelog M. The role of the thymus in immunosenescence: lessons from the study of thymectomized individuals. Aging (Albany NY). 2010;2(2):78–81.

    Article  CAS  Google Scholar 

  4. Bonafe M, Storci G, Franceschi C. Inflamm-aging of the stem cell niche: breast cancer as a paradigmatic example: breakdown of the multi-shell cytokine network fuels cancer in aged people. BioEssays. 2012;34(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  5. Buffa S, Bulati M, Pellicano M, Dunn-Walters DK, Wu YC, Candore G, et al. B cell immunosenescence: different features of naive and memory B cells in elderly. Biogerontology. 2011;12(5):473–83.

    Article  CAS  PubMed  Google Scholar 

  6. Johnson SA, Cambier JC. Ageing, autoimmunity and arthritis: senescence of the B cell compartment—implications for humoral immunity. Arthritis Res Ther. 2004;6(4):131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol. 2002;169(4):1984–92.

    Article  CAS  PubMed  Google Scholar 

  8. Gillespie GM, Wills MR, Appay V, O’Callaghan C, Murphy M, Smith N, et al. Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8(+) T lymphocytes in healthy seropositive donors. J Virol. 2000;74(17):8140–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zissel G, Schlaak M, Muller-Quernheim J. Age-related decrease in accessory cell function of human alveolar macrophages. J Investig Med. 1999;47(1):51–6.

    CAS  PubMed  Google Scholar 

  10. Lloberas J, Celada A. Effect of aging on macrophage function. Exp Gerontol. 2002;37(12):1325–31.

    Article  CAS  PubMed  Google Scholar 

  11. Mahbub S, Deburghgraeve CR, Kovacs EJ. Advanced age impairs macrophage polarization. J Interferon Cytokine Res. 2012;32(1):18–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Le Garff-Tavernier M, Beziat V, Decocq J, Siguret V, Gandjbakhch F, Pautas E, et al. Human NK cells display major phenotypic and functional changes over the life span. Aging Cell. 2010;9(4):527–35.

    Article  PubMed  Google Scholar 

  13. Hayhoe RP, Henson SM, Akbar AN, Palmer DB. Variation of human natural killer cell phenotypes with age: identification of a unique KLRG1-negative subset. Hum Immunol. 2010;71(7):676–81.

    Article  CAS  PubMed  Google Scholar 

  14. Muzzioli M, Stecconi R, Moresi R, Provinciali M. Zinc improves the development of human CD34+ cell progenitors towards NK cells and increases the expression of GATA-3 transcription factor in young and old ages. Biogerontology. 2009;10(5):593–604.

    Article  CAS  PubMed  Google Scholar 

  15. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.

    Article  CAS  PubMed  Google Scholar 

  16. Segel GB, Halterman MW, Lichtman MA. The paradox of the neutrophil’s role in tissue injury. J Leukoc Biol. 2011;89(3):359–72.

    Article  CAS  PubMed  Google Scholar 

  17. Hager M, Cowland JB, Borregaard N. Neutrophil granules in health and disease. J Intern Med. 2010;268(1):25–34.

    CAS  PubMed  Google Scholar 

  18. Rehaume LM, Hancock RE. Neutrophil-derived defensins as modulators of innate immune function. Crit Rev Immunol. 2008;28(3):185–200.

    Article  CAS  PubMed  Google Scholar 

  19. Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, et al. The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood. 2000;96(9):3086–93.

    CAS  PubMed  Google Scholar 

  20. Bardan A, Nizet V, Gallo RL. Antimicrobial peptides and the skin. Expert Opin Biol Ther. 2004;4(4):543–9.

    Article  CAS  PubMed  Google Scholar 

  21. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–95.

    Article  CAS  PubMed  Google Scholar 

  22. Rivas-Santiago B, Sada E, Hernandez-Pando R, Tsutsumi V. Antimicrobial peptides in the innate immunity of infectious diseases. Salud Publica Mex. 2006;48(1):62–71.

    Article  PubMed  Google Scholar 

  23. Rivas-Santiago B, Serrano CJ, Enciso-Moreno JA. Susceptibility to infectious diseases based on antimicrobial peptide production. Infect Immun. 2009;77(11):4690–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Castaneda-Delgado JE, Miranda-Castro NY, Gonzalez-Amaro R, Gonzalez-Curiel I, Montoya-Rosales A, Rivas-Calderon B, et al. Production of antimicrobial peptides is preserved in aging. Clin Immunol. 2013;148(2):198–205.

    Article  CAS  PubMed  Google Scholar 

  25. Ligthart GJ, Corberand JX, Fournier C, Galanaud P, Hijmans W, Kennes B, et al. Admission criteria for immunogerontological studies in man: the SENIEUR protocol. Mech Ageing Dev. 1984;28(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  26. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8.

    Article  CAS  PubMed  Google Scholar 

  27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  28. Rivas-Santiago B, Contreras JC, Sada E, Hernandez-Pando R. The potential role of lung epithelial cells and beta-defensins in experimental latent tuberculosis. Scand J Immunol. 2008;67:448–52.

    Article  CAS  PubMed  Google Scholar 

  29. Rivas-Santiago B, Hernandez-Pando R, Carranza C, Juarez E, Contreras JL, Aguilar-Leon D, et al. Expression of cathelicidin LL-37 during Mycobacterium tuberculosis infection in human alveolar macrophages, monocytes, neutrophils, and epithelial cells. Infect Immun. 2008;76(3):935–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rivas-Santiago B, Trujillo V, Montoya A, Gonzalez-Curiel I, Castaneda-Delgado J, Cardenas A, et al. Expression of antimicrobial peptides in diabetic foot ulcer. J Dermatol Sci. 2012;65(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  31. Wenisch C, Patruta S, Daxbock F, Krause R, Horl W. Effect of age on human neutrophil function. J Leukoc Biol. 2000;67(1):40–5.

    CAS  PubMed  Google Scholar 

  32. Emanuelli G, Lanzio M, Anfossi T, Romano S, Anfossi G, Calcamuggi G. Influence of age on polymorphonuclear leukocytes in vitro: phagocytic activity in healthy human subjects. Gerontology. 1986;32(6):308–16.

    Article  CAS  PubMed  Google Scholar 

  33. Plowden J, Renshaw-Hoelscher M, Gangappa S, Engleman C, Katz JM, Sambhara S. Impaired antigen-induced CD8+ T cell clonal expansion in aging is due to defects in antigen presenting cell function. Cell Immunol. 2004;229(2):86–92.

    Article  CAS  PubMed  Google Scholar 

  34. Plowden J, Renshaw-Hoelscher M, Engleman C, Katz J, Sambhara S. Innate immunity in aging: impact on macrophage function. Aging Cell. 2004;3(4):161–7.

    Article  CAS  PubMed  Google Scholar 

  35. Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol. 2013;93(2):185–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nidadavolu LS, Niedernhofer LJ, Khan SA. Identification of microRNAs dysregulated in cellular senescence driven by endogenous genotoxic stress. Aging (Albany NY). 2013;5(6):460–73.

    Article  CAS  Google Scholar 

  37. Olivieri F, Rippo MR, Procopio AD, Fazioli F. Circulating inflamma-miRs in aging and age-related diseases. Front Genet. 2013;4:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martineau AR, Newton SM, Wilkinson KA, Kampmann B, Hall BM, Nawroly N, et al. Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest. 2007;117(7):1988–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chaly YV, Paleolog EM, Kolesnikova TS, Tikhonov II, Petratchenko EV, Voitenok NN. Neutrophil alpha-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells. Eur Cytokine Netw. 2000;11(2):257–66.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Council of Science and Technology in Mexico-CONACyT (FOSSIS-2011-1-161735). JECD performed the experiments analysed data and helped to write the manuscript. JdA, IFL, PML, RGA and JAEM performed the experiments and collected the samples. BRS designed the study, obtained financial support, analysed data and wrote the paper. Special thanks to ISSSTE Senior Association for their enthusiastic participation in the study. We thank the clinical laboratory staff at the Emilio Varela Lujan Hospital of Zacatecas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Rivas-Santiago.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Additional information

Bruno Rivas-Santiago and Julio E. Castañeda-Delgado are joint authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivas-Santiago, B., Castañeda-Delgado, J.E., de Haro-Acosta, J. et al. Human neutrophil peptide-1 decreases during ageing in selected Mexican population. Immunol Res 64, 445–454 (2016). https://doi.org/10.1007/s12026-015-8689-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8689-2

Keywords

Navigation