Skip to main content

Advertisement

Log in

Enhanced expression of trim14 gene suppressed Sindbis virus reproduction and modulated the transcription of a large number of genes of innate immunity

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

In the present research, we have studied an influence of enhanced expression TRIM14 on alphavirus Sindbis (SINV, Togaviridae family) infection. In the HEK293 cells transfected with human trim14 gene (HEK–trim14), SINV yield after infection was decreased 1000–10,000 times (3–4 lg of TCD50/ml) at 24 h p.i. and considerably less (1–2 lg of TCD50/ml) at 48 h p.i. Analysis of the expression of 43 genes directly or indirectly involved in innate immune machine in HEK–trim14 non-infected cells comparing with the control (non-transfected) HEK293 cells revealed that stable trim14 transfection in HEK293 cells caused increased transcription of 18 genes (ifna, il6 (ifnβ2), isg15, raf-1, NF-kB (nf-kb1, rela, nf-kb2, relb), grb2, grb3-3, traf3ip2, junB, c-myb, pu.1, akt1, tyk2, erk2, mek2) and lowered transcription of 3 genes (ifnγ, gata1, il-17a). The similar patterns of genes expression observe in SINV-infected non-transfected HEK293 cells. However, SINV infection of HEK–trim14 cells caused inhibition of the most interferon cascade genes as well as subunits of transcription factor NF-κB. Thus, stable enhanced expression of trim14 gene in cells activates the transcription of many immunity genes and suppresses the SINV reproduction, but SINV infection of HEK–trim14 cells promotes inhibition of some genes involved in innate immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kawai T, Akira S. Regulation of innate immune signaling pathways by 542 the tripartite motif (TRIM) family proteins. EMBO Mol Med. 2011;3:513–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. McNab FW, Rajsbaum R, Stoye JP, O’Garra A. Tripartite-motif proteins and innate immune regulation. Curr Opin Immunol. 2011;23:46–56.

    Article  CAS  PubMed  Google Scholar 

  3. Nisole S, Stoye JP, Saib A. TRIM family proteins: retroviral restriction and animal defence. Nat Rev Microbiol. 2005;3:799–808.

    Article  CAS  PubMed  Google Scholar 

  4. Towers GJ. Control of viral infectivity by tripartite motif proteins. Hum Gene Ther. 2005;16:1125–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-1-mediated antiviral activity. Nature. 2007;446:916–20.

    Article  CAS  PubMed  Google Scholar 

  6. Everett RD, Chelbi-Alex MK. PML and PML nuclear bodies: implications in antiviral defense. Biochimie. 2007;89:819–30.

    Article  CAS  PubMed  Google Scholar 

  7. Ozato K, Shin DM, Chang TH, Morse HC 3rd. TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol. 2008;8:849–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Munir M. TRIM proteins: another class of viral victims. Sci Signal. 2010;3:jc2.

    PubMed  Google Scholar 

  9. Wang J, Liu B, Wang N, Lee YM, Liu C, Li K. TRIM56 is a virus and interferon inducible E3 ubiquitin ligase that restricts pestivirus infection. J Virol. 2011;85:3733–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Grütter MG, Luban J. TRIM5 structure, HIV-1 capsid recognition, and innate immune signaling. Curr Opin Virol. 2012;2:142–50.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Tarantul VZ, Nikolaev AI, Martynenko A, Hannig H, Hunsmann G, Bodemer W. Differential gene expression in B-cell non-Hodgkin’s lymphoma of SIV-infected monkey. AIDS Res Hum Retroviruses. 2000;16:173–9.

    Article  CAS  PubMed  Google Scholar 

  12. Nenasheva V, Maksimov V, Nikolaev A, Tarantul V. Comparative analysis of the level of gene transcription in two types of HIV-associated lymphoma. Mol Gen Mikrobiol Virusol. 2001;4:27–31.

    PubMed  Google Scholar 

  13. Nenasheva VV, Nikolaev AI, Martynenko AV, Kaplanskaya IB, Bodemer W, Hunsmann G, et al. Differential gene expression in HIV/SIV-associated and spontaneous lymphomas. Int J Med Sci. 2005;2:122–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Choi JH, Choi BS, Kim SS, Lee JS, et al. Differentially expressed cellular gene profiles between healthy HIV-infected Koreans and AIDS patients. Korean J Hematol. 2007;42:33–42.

    Article  Google Scholar 

  15. Uchil PD, Quinlan BD, Chan WT, Luna JM, Mothes W. TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog. 2008;4:e16.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Uchil PD, Hinz A, Siegel S, Coenen-Stass A, Pertel T, Luban J, et al. TRIM protein-mediated regulation of inflammatory and innate immune signaling and its association with antiretroviral activity. J Virol. 2013;87:257–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Metz P, Dazert E, Ruggieri A, Mazur J, Kaderali L, Kaul A, et al. Identification of type I and type II interferon-induced effectors controlling hepatitis C virus replication. Hepatology. 2012;56:2082–93.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou Z, Jia X, Xue Q, Dou Z, Ma Y, Zhao Z, et al. TRIM14 is a mitochondrial adaptor that facilitates retinoic acid-inducible gene-I-like receptor-mediated innate immune response. Proc Natl Acad Sci USA. 2014;111:E245–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ramilo O, Allman W, Chung W, Mejias A, Ardura M, Glaser C, et al. Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood. 2007;109:2066–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Su AI, Pezacki JP, Wodicka L, Brideau AD, Supekova L, Thimme R, et al. Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci USA. 2002;99:15669–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Chen Y, Hamati E, Lee PK, Lee WM, Wachi S, Schnurr D, et al. Rhinovirus induces airway epithelial gene expression through double-stranded RNA and IFN-dependent pathways. Am J Respir Cell Mol Biol. 2006;34:192–203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lvov DK, Uryvaev LV. Togaviruses. In: Lvov DK, editor. Manual of medical virology. Moscow: Medical Informational Agency; 2008. p. 217–24 (Russian).

    Google Scholar 

  23. Uryvaev LV, Vasilenko VA, Parasjuk NA, Ionova KS, Gushchina EA, Kullapere AA, et al. Isolation and identification Sindbis virus from migratory birds in Estonia. Probl Virol. 1992;1:67–74.

    Google Scholar 

  24. Uryvaev LV, Dedova AV, Dedova LV, Ionova KS, Parasjuk NA, Selivanova TK, et al. Contamination of cell cultures with bovine viral diarrhea virus (BVDV). Bull Exp Biol Med. 2012;53:77–81.

    Article  Google Scholar 

  25. Nenasheva VV, Kovaleva GV, Khaidarova NV, Novosadova EV, Manuilova ES, Antonov SA, et al. Trim14 overexpression causes the same transcriptional changes in mouse embryonic stem cells and human HEK293 cells. In Vitro Cell Dev Biol Anim. 2014;50:121–8.

    Article  CAS  PubMed  Google Scholar 

  26. Griffin DE. The alphaviruses. In: Knipe DM, Howley PM, editors. Fields virology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 1023–67.

    Google Scholar 

  27. Yin J, Gardner CL, Burke CW, Ryman KD, Klimstra WB, et al. Similarities and differences in antagonism of neuron alpha/beta interferon responses by Venezuelan equine encephalitis and Sindbis alphaviruses. J Virol. 2009;83:10036–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Després P, Griffin JW, Griffin DE. Antiviral activity of alpha interferon in Sindbis virus-infected cells is restored by anti-E2 monoclonal antibody treatment. J Virol. 1995;69:7345–8.

    PubMed Central  PubMed  Google Scholar 

  29. Czarniecki CW, Allen PT. Disparate response of encephalomyocarditis virus and MM virus to interferon in JLS-V9R cells. Antivir Res. 1984;4:351–5.

    Article  CAS  PubMed  Google Scholar 

  30. Grieder FB, Vogel SN. Role of interferon and IFN regulatory factors in early protection against VEE virus infection. Virology. 1999;257:106–18.

    Article  CAS  PubMed  Google Scholar 

  31. Baker RG, Hayden MS, Ghosh S. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011;13:11–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Bonadies N, Neururer Ch, Steege A, Vallabhapurapu S, Pabst T, Mueller BU. PU.1 is regulated by NF-κB through a novel binding site in a 17 kb upstream enhancer element NF-κB regulates PU.1 through a distal element. Oncogene. 2010;29:1062–72.

    Article  CAS  PubMed  Google Scholar 

  33. Rehli M, Poltorak A, Schwarzfischer L, Krause SW, Andreesen R, Beutler B. PU.1 and interferon consensus sequence-binding protein regulate the myeloid expression of the human Toll-like receptor 4 gene. J Biol Chem. 2000;275:9773–81.

    Article  CAS  PubMed  Google Scholar 

  34. Hirano T. Interleukin 6 and its receptor: ten years later. Int Rev Immunol. 1998;16:249–84.

    Article  CAS  PubMed  Google Scholar 

  35. Baccarini M. Second nature: biological functions of the Raf-1 “kinase”. FEBS Lett. 2005;579:3271–7.

    Article  CAS  PubMed  Google Scholar 

  36. Li X. Act1 modulates autoimmunity through its dual functions in CD40L/BAFF and IL-17 signaling. Cytokine. 2008;41:105–13.

    Article  CAS  PubMed  Google Scholar 

  37. Cheng J, Phong B, Wilson DC, Hirsch R, Kane LP. Akt fine-tunes NF-κB-dependent gene expression during T cell activation. J Biol Chem. 2011;286:36076–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6:24–37.

    Article  PubMed  Google Scholar 

  39. Marcus PI, Fuller FJ. Interferon induction by viruses. II. Sindbis virus: interferon induction requires one-quarter of the genome-genes G and A. J Gen Virol. 1979;44:169–77.

    Article  CAS  PubMed  Google Scholar 

  40. Hidmark AS, McInerney GM, Nordstrom EK, Douagi I, Werner KM, Liljeström P, et al. Early alpha/beta interferon production by myeloid dendritic cells in response to UV-inactivated virus requires viral entry and interferon regulatory factor 3 but not MyD88. JVirol. 2005;79:10376–85.

    Article  CAS  Google Scholar 

  41. Iwasaki A, Medzhitov R. Innate responses to viral infections. In: Knipe DM, Howley PM, editors. Fields Virology. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 189–213.

    Google Scholar 

  42. Lenschow DJ, Giannakopoulos NV, Gunn LJ, Johnston C, O’Guin AK, Schmidt RE, et al. Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J Virol. 2005;79:13974–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Breakwell L, Dosenovic P, Karlsson Hedestram GB, D’Amato M, Liljeström P, Fazakerley J, et al. SFV nsP2 protein is involved in suppression of type I IFN response. J Virol. 2007;81:8677–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Gorchakov R, Frolova E, Frolov I. Inhibition of transcription and translation in Sindbis virus-infected cells. J Virol. 2005;79:9397–409.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant Numbers 13-04-00598 and 15-04-07752 from the Russian Foundation for Basic Research and grant for Molecular and Cellular Biology from Russian Academy of Sciences.

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Nenasheva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nenasheva, V.V., Kovaleva, G.V., Uryvaev, L.V. et al. Enhanced expression of trim14 gene suppressed Sindbis virus reproduction and modulated the transcription of a large number of genes of innate immunity. Immunol Res 62, 255–262 (2015). https://doi.org/10.1007/s12026-015-8653-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8653-1

Keywords

Navigation