Skip to main content
Log in

Three conserved MyD88-recruiting TLR residues exert different effects on the human TLR4 signaling pathway

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Stimulation of Toll-like receptor (TLR) 4 leads to the activation of both MyD88-dependent and MyD88-independent pathways through the recruitment of adaptors TIRAP/MyD88 and TRIF/TRAM, respectively. However, the molecular basis of the TLR4 Toll/interleukin-1 receptor (TIR) domain in recruiting these downstream adaptors is still not entirely clear. Here, we identify three amino acid residues (714P in the BB loop, 696L in the αA helix and 721N in the αB sheet) conserved in all MyD88-recruited TLRs, but not the TLR3 TIR domain, as being critical for TLR4 responsiveness to LPS. These results were based on the substitution of each residue with a residue of the opposite type (hydrophilic/hydrophobic). However, the responsiveness of the TLR4 mutants to LPS was only partially decreased when each residue was replaced with a residue having the same hydrophilicity/hydrophobicity. This result is likely associated with an alteration in the BB-loop conformation of each TLR4 mutant and its ability to recruit the downstream adaptor TRAM. Thus, we identified three amino acids essential for TLR4 signaling, and their replacement with a residue of the same or opposite hydrophilicity/hydrophobicity greatly affected TLR4 signaling. This study furthers our understanding of the molecular mechanism by which the TLR4 TIR domain modulates TLR4 signaling and also provides new insight for the design of antisepsis therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84.

    Article  CAS  PubMed  Google Scholar 

  2. O’Neill LA, Golenbock D, Bowie AG. The history of Toll-like receptors—redefining innate immunity. Nat Rev Immunol. 2013;13(6):453–60.

    Article  PubMed  Google Scholar 

  3. Dunzendorfer S, Lee HK, Soldau K, Tobias PS. TLR4 is the signaling but not the lipopolysaccharide uptake receptor. J Immunol. 2004;173(2):1166–70.

    Article  CAS  PubMed  Google Scholar 

  4. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282(5396):2085–8.

    Article  CAS  PubMed  Google Scholar 

  5. Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet. 2000;25(2):187–91.

    Article  CAS  PubMed  Google Scholar 

  6. Roger T, Froidevaux C, Le Roy D, Reymond MK, Chanson AL, Mauri D, et al. Protection from lethal gram-negative bacterial sepsis by targeting Toll-like receptor 4. Proc Natl Acad Sci USA. 2009;106(7):2348–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Dunne A, O’Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE. 2003;2003(171):re3.

    PubMed  Google Scholar 

  8. O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7(5):353–64.

    Article  PubMed  Google Scholar 

  9. Zughaier SM, Zimmer SM, Datta A, Carlson RW, Stephens DS. Differential induction of the Toll-like receptor 4-MyD88-dependent and -independent signaling pathways by endotoxins. Infect Immun. 2005;73(5):2940–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Xu Y, Tao X, Shen B, Horng T, Medzhitov R, Manley JL, et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature. 2000;408(6808):111–5.

    Article  CAS  PubMed  Google Scholar 

  11. Dunne A, Ejdeback M, Ludidi PL, O’Neill LA, Gay NJ. Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88. J Biol Chem. 2003;278(42):41443–51.

    Article  CAS  PubMed  Google Scholar 

  12. Toshchakov VY, Fenton MJ, Vogel SN. Cutting edge: differential inhibition of TLR signaling pathways by cell-permeable peptides representing BB loops of TLRs. J Immunol. 2007;178(5):2655–60.

    Article  CAS  PubMed  Google Scholar 

  13. Jiang Z, Georgel P, Li C, Choe J, Crozat K, Rutschmann S, et al. Details of Toll-like receptor: adapter interaction revealed by germ-line mutagenesis. Proc Natl Acad Sci USA. 2006;103(29):10961–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Sali A, Overington JP. Derivation of rules for comparative protein modeling from a database of protein structure alignments. Protein Sci. 1994;3(9):1582–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511.

    Article  CAS  PubMed  Google Scholar 

  16. Yanagimoto S, Tatsuno K, Okugawa S, Kitazawa T, Tsukada K, Koike K, et al. A single amino acid of Toll-like receptor 4 that is pivotal for its signal transduction and subcellular localization. J Biol Chem. 2009;284(6):3513–20.

    Article  CAS  PubMed  Google Scholar 

  17. Ronni T, Agarwal V, Haykinson M, Haberland ME, Cheng G, Smale ST. Common interaction surfaces of the Toll-like receptor 4 cytoplasmic domain stimulate multiple nuclear targets. Mol Cell Biol. 2003;23(7):2543–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Qiu Y, Ding Y, Zou L, Tan Z, Liu T, Fu X, et al. Divergent roles of amino acid residues inside and outside the BB loop affect human Toll-like receptor (TLR)2/2, TLR2/1 and TLR2/6 responsiveness. PLoS One. 2013;8(4):e61508.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Verstak B, Arnot CJ, Gay NJ. An alanine-to-proline mutation in the BB-loop of TLR3 Toll/IL-1R domain switches signalling adaptor specificity from TRIF to MyD88. J Immunol. 2013;191(12):6101–9.

    Article  CAS  PubMed  Google Scholar 

  20. Li C, Zienkiewicz J, Hawiger J. Interactive sites in the MyD88 Toll/interleukin (IL) 1 receptor domain responsible for coupling to the IL1beta signaling pathway. J Biol Chem. 2005;280(28):26152–9.

    Article  CAS  PubMed  Google Scholar 

  21. Randow F, Seed B. Endoplasmic reticulum chaperone gp96 is required for innate immunity but not cell viability. Nat Cell Biol. 2001;3(10):891–6.

    Article  CAS  PubMed  Google Scholar 

  22. Yang Y, Liu B, Dai J, Srivastava PK, Zammit DJ, Lefrancois L, et al. Heat shock protein gp96 is a master chaperone for Toll-like receptors and is important in the innate function of macrophages. Immunity. 2007;26(2):215–26.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Wakabayashi Y, Kobayashi M, Akashi-Takamura S, Tanimura N, Konno K, Takahashi K, et al. A protein associated with Toll-like receptor 4 (PRAT4A) regulates cell surface expression of TLR4. J Immunol. 2006;177(3):1772–9.

    Article  CAS  PubMed  Google Scholar 

  24. Shen H, Tesar BM, Walker WE, Goldstein DR. Dual signaling of MyD88 and TRIF is critical for maximal TLR4-induced dendritic cell maturation. J Immunol. 2008;181(3):1849–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Orr MT, Duthie MS, Windish HP, Lucas EA, Guderian JA, Hudson TE, et al. MyD88 and TRIF synergistic interaction is required for TH1-cell polarization with a synthetic TLR4 agonist adjuvant. Eur J Immunol. 2013;43(9):2398–408.

    Article  CAS  PubMed  Google Scholar 

  26. Janssen E, Ozcan E, Liadaki K, Jabara HH, Manis J, Ullas S, et al. TRIF signaling is essential for TLR4-driven IgE class switching. J Immunol. 2014;192(6):2651–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gaddis DE, Michalek SM, Katz J. TLR4 signaling via MyD88 and TRIF differentially shape the CD4+ T cell response to Porphyromonas gingivalis hemagglutinin B. J Immunol. 2011;186(10):5772–83.

    Article  CAS  PubMed  Google Scholar 

  28. Brieger A, Rink L, Haase H. Differential regulation of TLR-dependent MyD88 and TRIF signaling pathways by free zinc ions. J Immunol. 2013;191(4):1808–17.

    Article  CAS  PubMed  Google Scholar 

  29. Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol. 2008;9(4):361–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kissner TL, Moisan L, Mann E, Alam S, Ruthel G, Ulrich RG, et al. A small molecule that mimics the BB-loop in the Toll interleukin-1 (IL-1) receptor domain of MyD88 attenuates staphylococcal enterotoxin B-induced pro-inflammatory cytokine production and toxicity in mice. J Biol Chem. 2011;286(36):31385–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Couture LA, Piao W, Ru LW, Vogel SN, Toshchakov VY. Targeting Toll-like receptor (TLR) signaling by Toll/interleukin-1 receptor (TIR) domain-containing adapter protein/MyD88 adapter-like (TIRAP/Mal)-derived decoy peptides. J Biol Chem. 2012;287(29):24641–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Avbelj M, Horvat S, Jerala R. The role of intermediary domain of MyD88 in cell activation and therapeutic inhibition of TLRs. J Immunol. 2011;187(5):2394–404.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China for WX (81000747) and the Natural Science Foundation of Military for WX (CWS12J093). We are grateful to Professor Kensuke Miyake for providing us with plasmid pEF-BOS-TLR4 and pEF-BOS-MD-2 and Dr. Xin Du for pFLAG-CMV1-CD14.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jigang Dai or Wenyue Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Qiu, Y., Zou, L. et al. Three conserved MyD88-recruiting TLR residues exert different effects on the human TLR4 signaling pathway. Immunol Res 62, 213–221 (2015). https://doi.org/10.1007/s12026-015-8652-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8652-2

Keywords

Navigation