Skip to main content

Advertisement

Log in

Development of chimeric candidate vaccine against HPV18: a proof of concept

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Human papillomaviruses (HPVs) are prerequisite for the development of cervical cancer, with HPV16 and HPV18 being the most prevalent. Despite the fact that two prophylactic vaccines against HPVs are in the market, wide-scale application of the vaccine in developing countries is a major problem as far as cost of the vaccine and lack of therapeutic efficacy are concerned. Hence, the aim of our study was to develop HPV18 L1E7 chimeric virus-like particles (CVLPs) vaccine candidate possessing both, prophylactic and therapeutic potential against HPV18-associated cervical cancer. In this study, we have developed a potential candidate vaccine against HPV18 involving HPV18 L1E7 CVLPs, which was expressed in E. coli and assembled in vitro. These CVLPs were able to induce a neutralizing antibody response as well as a cell-mediated immune response in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bernard HU, Burk BD, Chen Z, van Doorslaer K, Zur Hausen H, de Villiers EM. Classification of papillomaviruses (PVs) on 189 PV types and proposal of taxonomic amendments. Virology. 2010;401(1):70–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Muñoz N, Castellsagué X, de González AB, Gissmann L. Chapter 1: HPV in the etiology of human cancer. Vaccine. 2006;24(Suppl 3):1–10.

    Article  Google Scholar 

  3. Frazer IH. Prevention of cervical cancer through papillomavirus vaccination. Nat Rev Immunol. 2004;4(1):46–54.

    Article  CAS  PubMed  Google Scholar 

  4. Kahn JA. HPV vaccination for the prevention of cervical intraepithelial neoplasia. N Engl J Med. 2009;361(3):271–8.

    Article  CAS  PubMed  Google Scholar 

  5. Roteli-Martins CM, Naud P, De Borba P, Teixeira JC, De Carvalho NS, Zahaf T, et al. Sustained immunogenicity and efficacy of the HPV-16/18 AS04-adjuvanted vaccine: up to 8.4 years of follow-up. Hum Vaccin Immuno ther. 2012;8(3):390–7.

    Article  Google Scholar 

  6. Cid-Arregui A. Therapeutic vaccines against human papillomavirus and cervical cancer. Open Virol J. 2009;3:67–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Monie A, Tsen SW, Hung CF, Wu TC. Therapeutic HPV DNA vaccines. Expert Rev Vaccines. 2009;8(9):1221–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hung CF, Ma B, Monie A, Tsen SW, Wu TC. Therapeutic human papillomavirus vaccines: current clinical trials and future directions. Expert Opin Biol Ther. 2008;8(4):421–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Monie A, Hung CF, Wu TC. Preventive and therapeutic HPV vaccines. Curr Opin Investig Drugs. 2007;8(12):1038–50.

    CAS  PubMed  Google Scholar 

  10. Narisawa-Saito M, Kiyono T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci. 2007;98(10):1505–11.

    Article  CAS  PubMed  Google Scholar 

  11. Munger K, Howley PM. Human papillomavirus immortalization and transformation functions. Virus Res. 2002;89:213–28.

    Article  CAS  PubMed  Google Scholar 

  12. Eiben GL, Velders MP, Kast WM. The cell-mediated immune response to human papillomavirus-induced cervical cancer: implications for immunotherapy. Adv Cancer Res. 2002;86:113–48.

    Article  CAS  PubMed  Google Scholar 

  13. Peng S, Trimble C, He L, Tsai YC, Lin CT, Boyd DA, et al. Characterization of HLAA2- restricted HPV-16 E7-specific CD8(+) T-cell immune responses induced by DNA vaccines in HLA-A2 transgenic mice. Gene Ther. 2006;13:67–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lin CT, Tsai YC, He L, Calizo R, Chou HH, Chang TC, et al. A DNA vaccine encoding a codon-optimized human papillomavirus type 16 E6 gene enhances CTL response and anti-tumor activity. J Biomed Sci. 2006;13:481–8.

    Article  CAS  PubMed  Google Scholar 

  15. Jochmus I, Schafer K, Faath S, Muller M, Gissmann L. Chimeric virus-like particles of the human papillomavirus type 16 (HPV 16) as a prophylactic and therapeutic vaccine. Arch Med Res. 1999;30:269–74.

    Article  CAS  PubMed  Google Scholar 

  16. Schafer K, Muller M, Faath S, Henn A, Osen W, Zentgraf H, et al. Immune response to human papillomavirus 16 L1E7 chimeric virus-like particles: induction of cytotoxic T cells and specific tumor protection. Int J Cancer. 1999;81(6):881–8.

    Article  CAS  PubMed  Google Scholar 

  17. Schellenbacher C, Roden R, Kirnbauer R. Chimeric L1-L2 virus-like particles as potential broadspectrum human papillomavirus vaccines. J Virol. 2009;83(19):10085–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Sharma C, Dey B, Wahiduzzaman M, Singh N. Human papillomavirus 16 L1–E7 chimeric virus like particles show prophylactic and therapeutic efficacy in murine model of cervical cancer. Vaccine. 2012;30:5417–24.

    Article  CAS  PubMed  Google Scholar 

  19. Bian T, Wang Y, Lu Z, Ye Z, Zhao L, Ren J, et al. Human papillomavirus type 16 L1E7 chimeric capsomeres have prophylactic and therapeutic efficacy against papillomavirus in mice. Mol Cancer Ther. 2008;7(5):1329–35.

    Article  CAS  PubMed  Google Scholar 

  20. Roden RB, Hubbert NL, Kirnbauer R, Breitburd F, Lowy DR, Schiller JT. Papillomavirus L1 capsids agglutinate mouse erythrocytes through a proteinaceous receptor. J Virol. 1995;69(8):5147–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Kjaer SK, Sigurdsson K, Iversen OE, Hernandez-Avila M, Wheeler CM, Perez G, et al. A pooled analysis of continued prophylactic efficacy of quadrivalent human papillomavirus (Types 6/11/16/18) vaccine against high-grade cervical and external genital lesions. Cancer Prev Res (Phila). 2009;2(10):868–78.

    Article  Google Scholar 

  22. Olsson SE, Kjaer SK, Sigurdsson K, Iversen OE, Hernandez-Avila M, Wheeler CM, et al. Evaluation of quadrivalent HPV 6/11/16/18 vaccine efficacy against cervical and anogenital disease in subjects with serological evidence of prior vaccine type HPV infection. Hum Vaccine. 2009;5(10):696–704.

    Article  CAS  Google Scholar 

  23. Paavonen J, Naud P, Salmeron J, Wheeler CM, Chow SN, Apter D, et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet. 2009;374(9686):301–14.

    Article  CAS  PubMed  Google Scholar 

  24. Yuan H, Estes PA, Chen Y, Newsome J, Olcese VA, Garcea RL, et al. Immunization with a pentameric L1 fusion protein protects against papillomavirus infection. J Virol. 2001;75:7848–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Rollman E, Arnheim L, Collier B, Oberg D, Hall H, Klingstrom J, et al. HPV-16 L1 genes with inactivated negative RNA elements induce potent immune responses. Virology. 2004;322:182–9.

    Article  CAS  PubMed  Google Scholar 

  26. Rose RC, White WI, Li M, Suzich JA, Lane C, Garcea RL. Human papillomavirus type 11 recombinant L1 capsomeres induce virus-neutralizing antibodies. J Virol. 1998;72:6151–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Chen XS, Casini G, Harrison SC, Garcea RL. Papillomavirus capsid protein expression in Escherichia coli: purification and assembly of HPV11 and HPV16 L1. J Mol Biol. 2001;307:173–82.

    Article  CAS  PubMed  Google Scholar 

  28. Chen XS, Garcea RL, Goldberg I, Casini G, Harrison SC. Structure of small viruslike particles assembled from the L1 protein of human papillomavirus 16. Mol Cell. 2000;5(3):557–67.

    Article  CAS  PubMed  Google Scholar 

  29. Harper DM, Franco EL, Wheeler C, Ferris DG, Jenkins D, Schuind A, et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet. 2004;364:1757–65.

    Article  CAS  PubMed  Google Scholar 

  30. Mao C, Koutsky LA, Ault KA, Wheeler CM, Brown DR, Wiley DJ, et al. Efficacy of human papillomavirus-16 vaccine to prevent cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol. 2006;107:18–27.

    Article  PubMed  Google Scholar 

  31. Li H, Nookala S, Re F. Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1beta and IL-18 release. J Immunol. 2007;178(8):5271–6.

    Article  CAS  PubMed  Google Scholar 

  32. Carter JJ, Koutsky LA, Hughes JP, Lee SK, Kuypers J, Kiviat N, et al. Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection. J Infect Dis. 2000;181(6):1911–9.

    Article  CAS  PubMed  Google Scholar 

  33. Nardelli-Haefliger D, Wirthner D, Schiller JT, Lowy DR, Hildesheim A, Ponci F, et al. Specific antibody levels at the cervix during the menstrual cycle of women vaccinated with human papillomavirus 16 virus-like particles. J Natl Cancer Inst. 2003;95:1128–37.

    Article  PubMed  Google Scholar 

  34. Roden RB, Hubbert NL, Kirnbauer R, Christensen ND, Lowy DR, Schiller JT. Assessment of the serological relatedness of genital human papillomaviruses by hemagglutination inhibition. J Virol. 1996;70:3298–301.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Franconi R, Di Bonito P, Dibello F, Accardi L, Muller A, Cirilli A, et al. Plant-derived human papillomavirus 16 E7 oncoprotein induces immune response and specific tumor protection. Cancer Res. 2002;62:3654–8.

    CAS  PubMed  Google Scholar 

  36. Wilson VG, Rosas Acosta G. Molecular targets for papillomavirus therapy. Curr Drug Targets-Infect Disord. 2003;3:221–39.

    Article  CAS  PubMed  Google Scholar 

  37. Ressing ME, Sette A, Brandt RM, Ruppert J, Wentworth PA, Hartman M, et al. Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-binding peptides. J Immunol. 1995;154:5934–43.

    CAS  PubMed  Google Scholar 

  38. Castellanos MR, Hayes RL, Mitchell A, Maiman MD. Synthetic peptides induce a cytotoxic response against human papillomavirus type-18. Gynecol Oncol. 2001;82:77–83.

    Article  CAS  PubMed  Google Scholar 

  39. Sharma C, Khan MA, Mohan T, Shrinet J, Latha N, Singh N. A synthetic chimeric peptide harboring human papillomavirus 16 cytotoxic T lymphocyte epitopes shows therapeutic potential in a murine model of cervical cancer. Immunol Res. 2014;58(1):132–8.

    Article  CAS  PubMed  Google Scholar 

  40. Lenz P, Day PM, Pang YY, Frye SA, Jensen PN, Lowy DR, et al. Papillomavirus-like particles induce acute activation of dendritic cells. J Immunol. 2001;166:5346–55.

    Article  CAS  PubMed  Google Scholar 

  41. Rudolf MP, Fausch SC, Da Silva DM, Kast WM. Human dendritic cells are activated by chimeric human papillomavirus type-16 virus-like particles and induce epitope-specific human T cell responses in vitro. J Immunol. 2001;166:5917–24.

    Article  CAS  PubMed  Google Scholar 

  42. Dupuy C, Buzoni-Gatel D, Touze A, Le Cann P, Bout D, Coursaget P. Cell mediated immunity induced in mice by HPV 16 L1 virus-like particles. Microb Pathog. 1997;22(4):219–25.

    Article  CAS  PubMed  Google Scholar 

  43. Nakagawa M, Stites DP, Palefsky JM, Kneass Z, Moscicki AB. CD4-positive and CD8-positive cytotoxic T lymphocytes contribute to human papillomavirus type 16 E6 and E7 responses. Clin Diagn Lab Immunol. 1999;6(4):494–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Liu XS, Leerberg J, MacDonald K, Leggatt GR, Frazer IH. IFN-gamma promotes generation of IL-10 secreting CD4+ T cells that suppress generation of CD8 responses in an antigen-experienced host. J Immunol. 2009;183(1):51–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Department of Biotechnology, and Mohammed Wahiduzzaman was awarded fellowship from University Grants Commission.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeta Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahiduzzaman, M., Sharma, C., Dey, B. et al. Development of chimeric candidate vaccine against HPV18: a proof of concept. Immunol Res 62, 189–197 (2015). https://doi.org/10.1007/s12026-015-8650-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8650-4

Keywords

Navigation