Skip to main content

Advertisement

Log in

A novel approach for rapid cell assessment to estimate DNA recovery from human bone tissue

  • Original Article
  • Published:
Forensic Science, Medicine and Pathology Aims and scope Submit manuscript

Abstract

We report on the use of a DNA staining dye to locate and record nucleated osteocytes and other bone-related cells within sections of archived formalin-fixed and paraffin-embedded human tibia from which informative DNA profiles were obtained. Eleven of these archived tibia samples were sectioned at a thickness of 5 µm. Diamond™ Nucleic Acid Dye was applied to the sections and cells within the matrix of the bone fluoresced so that their location and number of cells could be photographed. DNA was isolated from these 11 samples using a standard extraction process and the yields were quantified by real-time PCR. Complete STR profiles were generated from ten bone extracts where low-level inhibition was recorded with an incomplete STR profile obtained from one sample with higher inhibition. The stained image of this sample showed that few cells were present. There was a significant relationship between the number of DD-stained cells and the number of alleles obtained (p < 0.05). Staining cells to determine the prevalence of bone cell nuclei allows a triage of samples prior to any subsequent DNA profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

Data availability

N/A

References

  1. Baak-Pablo R, Dezentje V, Guchelaar H-J, van der Straaten T. Genotyping of DNA Samples Isolated from Formalin-Fixed Paraffin-Embedded Tissues Using Preamplification. J Mol Diagn. 2010;12(6):746–9. https://doi.org/10.2353/jmoldx.2010.100047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bonin S, Petrera F, Niccolini B, Stanta G. PCR analysis in archival postmortem tissues. Mol Pathol. 2003;56(3):184–6. https://doi.org/10.1136/mp.56.3.184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Buckleton JS, Bright JA, Gittelson S, Moretti TR, Onorato AJ, Bieber FR, et al. The Probabilistic Genotyping Software STRmix: Utility and Evidence for its Validity. J Forensic Sci. 2019;64(2):393–405. https://doi.org/10.1111/1556-4029.13898.

    Article  PubMed  Google Scholar 

  4. Busse B, Djonic D, Milovanovic P, Hahn M, Püschel K, Ritchie RO, et al. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell. 2010;9(6):1065–75. https://doi.org/10.1111/j.1474-9726.2010.00633.x.

    Article  CAS  PubMed  Google Scholar 

  5. Cindy Sampias GR. H&E Staining Overview: A Guide to Best Practices. Leica Biosystems.

  6. Dapson RW. Glyoxal fixation: how it works and why it only occasionally needs antigen retrieval. Biotech Histochem. 2007;82(3):161–6. https://doi.org/10.1080/10520290701488113.

    Article  CAS  PubMed  Google Scholar 

  7. Dapson RW. Macromolecular changes caused by formalin fixation and antigen retrieval. Biotech Histochem. 2007;82(3):133–40. https://doi.org/10.1080/10520290701567916.

    Article  CAS  PubMed  Google Scholar 

  8. Davoren J, Vanek D, Konjhodzić R, Crews J, Huffine E, Parsons TJ. Highly effective DNA extraction method for nuclear short tandem repeat testing of skeletal remains from mass graves. Croat Med J. 2007;48(4):478–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Desmyter S, De Greef C. A more efficient extraction method of human bone resulting in improved DNA profiling. Forensic Sci int Genetics Suppl Series. 2008;1(1):24–5. https://doi.org/10.1016/j.fsigss.2007.10.092.

    Article  Google Scholar 

  10. Edson SM, Roberts M. Determination of materials present in skeletonized human remains and the associated DNA: Development of a GC/MS protocol. Forensic Sci Int: Synergy. 2019;1:170–84. https://doi.org/10.1016/j.fsisyn.2019.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Eltoum I, Fredenburgh J, Myers RB, Grizzle WE. Introduction to the theory and practice of fixation of tissues. J Histo. 2001;24(3):173–90.

    CAS  Google Scholar 

  12. Farrugia A, Keyser C, Ludes B. Efficiency evaluation of a DNA extraction and purification protocol on archival formalin-fixed and paraffin-embedded tissue. Forensic Sci Int. 2009;194(1):25–8. https://doi.org/10.1016/j.forsciint.2009.09.004.

    Article  CAS  Google Scholar 

  13. Fox CH, Johnson FB, Whiting J. Roller pp. Formaldehyde fixation J Histochemistry & Cytochemistry. 1985;33(8):845–53.

    Article  CAS  Google Scholar 

  14. Guyard A, Boyez A, Pujals A, Robe C, Tran Van Nhieu J, Allory Y et al. DNA degrades during storage in formalin-fixed and paraffin-embedded tissue blocks. Virchows Arch. 2017;471(4):491–500. https://doi.org/10.1007/s00428-017-2213-0.

  15. Haines AM, Tobe SS, Kobus HJ, Linacre A. Effect of nucleic acid binding dyes on DNA extraction, amplification, and STR typing. Electrophoresis. 2015;36(20):2561–8. https://doi.org/10.1002/elps.201500170.

    Article  CAS  PubMed  Google Scholar 

  16. Harrel M, Hughes-Stamm S. A Powder-free DNA Extraction Workflow for Skeletal Samples. J Forensic Sci. 2020;65(2):601–9. https://doi.org/10.1111/1556-4029.14197.

    Article  CAS  PubMed  Google Scholar 

  17. Henry JP, Bordoni B. Histology, Osteoblasts. StatPearls [Internet] 2021.

  18. Kanokwongnuwut P, Martin B, Taylor D, Kirkbride KP, Linacre A. How many cells are required for successful DNA profiling? Forensic Sci Int: Genetics. 2021;51:1–10. https://doi.org/10.1016/j.fsigen.2020.102453.

    Article  CAS  Google Scholar 

  19. Kawanishi M, Matsuda T, Yagi T. Genotoxicity of formaldehyde: molecular basis of DNA damage and mutation. Front Environment Sci. 2014;2:1–8.

    Article  Google Scholar 

  20. Kiernan JA. Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: what they are and what they do. Microscopy today. 2000;8(1):8–13.

    Article  Google Scholar 

  21. Latham KE, Miller JJ. DNA recovery and analysis from skeletal material in modern forensic contexts. Forensic Sci Res. 2018;4(1):51–9. https://doi.org/10.1080/20961790.2018.1515594.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lin J, Kennedy SH, Svarovsky T, Rogers J, Kemnitz JW, Xu A, et al. High-quality genomic DNA extraction from formalin-fixed and paraffin-embedded samples deparaffinized using mineral oil. Anal Biochem. 2009;395(2):265–7. https://doi.org/10.1016/j.ab.2009.08.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ludyga N, Grünwald B, Azimzadeh O, Englert S, Höfler H, Tapio S, et al. Nucleic acids from long-term preserved FFPE tissues are suitable for downstream analyses. Virchows Arch. 2012;460(2):131–40. https://doi.org/10.1007/s00428-011-1184-9.

    Article  CAS  PubMed  Google Scholar 

  24. Manolagas SC, Parfitt AM. What old means to bone. Trends Endocrinol Metab. 2010;21(6):369–74. https://doi.org/10.1016/j.tem.2010.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meredith M, Bright J-A, Cockerton S, Vintiner S. Development of a one-tube extraction and amplification method for DNA analysis of sperm and epithelial cells recovered from forensic samples by laser microdissection. Forensic Sci Int Genet. 2011;6(1):91–6. https://doi.org/10.1016/j.fsigen.2011.02.007.

    Article  CAS  PubMed  Google Scholar 

  26. Morrison J, McColl S, Louhelainen J, Sheppard K, May A, Girdland-Flink L, et al. Assessing the performance of quantity and quality metrics using the QIAGEN Investigator® Quantiplex® pro RGQ kit. Sci Justice. 2020;60(4):388–97. https://doi.org/10.1016/j.scijus.2020.03.002.

    Article  PubMed  Google Scholar 

  27. Muratovic D, Findlay DM, Cicuttini FM, Wluka AE, Lee YR, Edwards S, et al. Bone marrow lesions in knee osteoarthritis: regional differences in tibial subchondral bone microstructure and their association with cartilage degeneration. Osteoarthritis Cartilage. 2019;27(11):1653–62. https://doi.org/10.1016/j.joca.2019.07.004.

    Article  CAS  PubMed  Google Scholar 

  28. Muratovic D, Findlay DM, Cicuttini FM, Wluka AE, Lee YR, Kuliwaba JS. Bone matrix microdamage and vascular changes characterize bone marrow lesions in the subchondral bone of knee osteoarthritis. Bone. 2018;108:193–201. https://doi.org/10.1016/j.bone.2018.01.012.

    Article  CAS  PubMed  Google Scholar 

  29. Nechifor-Boilă AC, Loghin A, Vacariu V, Halaţiu VB, Borda A. The storage period of the formalin-fixed paraffin-embedded tumor blocks does not influence the concentration and purity of the isolated DNA in a series of 83 renal and thyroid carcinomas. Rom J Morphol Embryol. 2015;56(2 Suppl):759–63.

    PubMed  Google Scholar 

  30. Nor Aidora Binti Saedon MSbA, Sopian Ashafi bin Mohamed, Mohd Shafiq bin Zulkarnain, Jervis Chow, Vanitha Palaeya, Miroslav Vranes and Keith Elliott. Evaluation of the Investigator Quantiplex Pro RGQ Kit for DNA quantification and quality assessment of forensic casework samples. 2018.

  31. Okello JBA, Zurek J, Devault AM, Kuch M, Okwi AL, Sewankambo NK, et al. Comparison of methods in the recovery of nucleic acids from archival formalin-fixed paraffin-embedded autopsy tissues. Anal Biochem. 2010;400(1):110–7. https://doi.org/10.1016/j.ab.2010.01.014.

    Article  CAS  PubMed  Google Scholar 

  32. Ramos-Vara JA. Technical aspects of immunohistochemistry. Vet Pathol. 2005;42(4):405–26. https://doi.org/10.1354/vp.42-4-405.

    Article  CAS  PubMed  Google Scholar 

  33. Team RC. R: A language and environment for statistical computing. 2013.

  34. Life Technologies. AmpFlSTR™ Identifiler™ Plus PCR Amplification Kit User Guide. 2018.

  35. Life Technologies. GlobalFiler™ and GlobalFiler™ IQC PCR Amplification Kits: User Guide. 2019.

  36. Thavarajah R, Mudimbaimannar VK, Elizabeth J, Rao UK, Ranganathan K. Chemical and physical basics of routine formaldehyde fixation. J Oral Maxi Patho: JOMFP. 2012;16(3):400–5.

    Article  Google Scholar 

  37. Trindade-Filho A, Mendes C, Ferreira S, Oliveira S, Vasconcelos A, Maia F, et al. DNA obtained from decomposed corpses cartilage: A comparison with skeleton muscle source. Forensic Sci Int Genetics Suppl Series. 2008;1(1):459–61. https://doi.org/10.1016/j.fsigss.2007.10.210.

    Article  Google Scholar 

  38. Vandewoestyne M, Van Nieuwerburgh F, Van Hoofstat D, Deforce D. Evaluation of three DNA extraction protocols for forensic STR typing after laser capture microdissection. Forensic Sci Int Genet. 2011;6(2):258–62. https://doi.org/10.1016/j.fsigen.2011.06.002.

    Article  CAS  PubMed  Google Scholar 

  39. Wheeler A, Czado N, Gangitano D, Turnbough M, Hughes-Stamm S. Comparison of DNA yield and STR success rates from different tissues in embalmed bodies. Int J Legal Med. 2017;131(1):61–6. https://doi.org/10.1007/s00414-016-1405-5.

    Article  PubMed  Google Scholar 

  40. Yang DY, Eng B, Waye JS, Dudar JC, Saunders SR. Improved DNA extraction from ancient bones using silica-based spin columns. American J Phy Anthro: The Official Publication of the American Association of Physical Anthropologists. 1998;105(4):539–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A special thanks to Mr. Adnan Mulaibrahimovic and Ms. Pat Vilimas for their assistance to TNL in performing histological samples.

Funding

This research was funded by the Attorney General’s Department through Forensic Science SA and the Ross Vining Memorial Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

TNL designed and performed the experiments. DM provided the samples, assisted with experimental design and practical advice. AL assisted with manuscript drafting, provided experimental advice, facilitated access the laboratory and funded this study. JMH assisted with the manuscript drafting and provided experimental advice. OH assisted with the manuscript drafting and provided experimental advice.

Corresponding author

Correspondence to Adrian Linacre.

Ethics declarations

Ethical approval

This study was approved by the Human Research Ethics Committees of the Royal Adelaide Hospital and The University of Adelaide, South Australia. Bone samples used in this study were collected with informed written consent from patients who had undergone knee arthroplasty surgery. All samples were anonymized with the exception of age and sex.

Competing interests

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T.N., Dzenita Muratovic, Handt, O. et al. A novel approach for rapid cell assessment to estimate DNA recovery from human bone tissue. Forensic Sci Med Pathol 17, 649–659 (2021). https://doi.org/10.1007/s12024-021-00428-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-021-00428-3

Keywords

Navigation