Skip to main content

Advertisement

Log in

Effect of age and storage conditions on the volatile organic compound profile of blood

  • Original Article
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

Cadaver-detection dogs are used by the police to locate missing persons, victims of homicide, and human remains following mass disasters. Training is conducted using a variety of training aids including blood which can be hours, weeks or months old and stored under variable conditions. The aim of this study was to chemically profile human blood using solid-phase microextraction coupled with gas chromatography–mass spectrometry to determine how the volatile organic compound (VOC) profile changed over time and under variable storage conditions. The VOC profiles of fresh and degraded blood were analyzed as well as blood stored at room temperature, refrigerated, and frozen. Fresh and degraded blood samples produced distinctive VOC patterns with VOC profiles becoming more complex over time. Freezing the blood produced a complex VOC profile that was clearly discriminated from the VOC profile for blood stored at room temperature or in a refrigerator. This study highlights the importance of standardizing the age and storage conditions when using blood as a training aid to ensure cadaver-detection dogs are exposed to an accurate representation of the blood VOCs they may encounter at a scene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. DeGreeff LE, Weakley-Jones B, Furton KG. Creation of training aids for human remains detection canines utilizing a non-contact, dynamic airflow volatile concentration technique. Forensic Sci Int. 2012;217:32–8.

    Article  PubMed  Google Scholar 

  2. Cablk ME, Szelagowski EE, Sagebiel JC. Characterization of the volatile organic compounds present in the headspace of decomposing animal remains, and compared with human remains. Forensic Sci Int. 2012;220:118–25.

    Article  CAS  PubMed  Google Scholar 

  3. Oesterhelweg L, Kröber S, Rottmann K, Willhöft J, Braun C, Thies N, Püschel K, Silkenath J, Gehl A. Cadaver dogs—a study on detection of contaminated carpet squares. Forensic Sci Int. 2008;174:35–9.

    Article  CAS  PubMed  Google Scholar 

  4. DeGreeff LE, Furton KG. Collection and identification of human remains volatiles by non-contact, dynamic airflow sampling and SPME-GC/MS using various sorbent materials. Anal Bioanal Chem. 2011;401:1295–307.

    Article  CAS  PubMed  Google Scholar 

  5. Hoffman EM, Curran AM, Dulgerian N, Stockham RA, Eckenrode BA. Characterisation of the volatile organic compounds present in the headspace of decomposing human remains. Forensic Sci Int. 2009;186:6–13.

    Article  CAS  PubMed  Google Scholar 

  6. Lorenzo N, Wan T, Harper RJ, Hsu Y, Chow M, Rose S, Furton KG. Laboratory and field experiments used to identify Canis lupus var. familiaris active odor signature chemicals from drugs, explosives, and humans. Anal Bioanal Chem. 2003;376:1212–24.

    Article  CAS  PubMed  Google Scholar 

  7. Stadler S, Stefanuto PH, Byer JD, Brokl M, Forbes SL, Focant JF. Analysis of synthetic canine training aids by comprehensive two-dimensional gas chromatography–time of flight mass spectrometry. J Chromatogr A. 2012;1255:202–6.

    Article  CAS  PubMed  Google Scholar 

  8. Statheropoulos M, Sianos E, Agapiou A, Georgiadou A, Pappa A, Tzamtzis N, Geiotaki H, Papageorgiou C, Kolostoumbis D. Preliminary investigation of using volatile organic compounds from human expired air, blood and urine for locating entrapped people in earthquakes. J Chromatogr B. 2005;822:112–7.

    Article  CAS  Google Scholar 

  9. Vass AA, Smith RR, Thompson CV, Burnett MN, Dulgerian N, Eckenrode BA. Odor analysis of decomposing buried human remains. J Forensic Sci. 2008;53:384–91.

    Article  CAS  PubMed  Google Scholar 

  10. Rebmann AJ, David E, Sorg MH, Koenig M. Cadaver dog handbook: forensic training and tactics for the recovery of human remains. Boca Raton: CRC Press; 2000.

    Google Scholar 

  11. Craven BA, Paterson EG, Settles GS. The fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmia. J R Soc Interface. 2010;47:933–43.

    Article  Google Scholar 

  12. Komar D. The use of cadaver dogs in locating scattered, scavenged, human remains: preliminary field test results. J Forensic Sci. 1999;44:405–8.

    CAS  PubMed  Google Scholar 

  13. Ensminger JJ. Police and military dogs criminal detection, forensic evidence, and judicial admissibility. Boca Raton: CRC Press; 2012.

    Google Scholar 

  14. DeGreeff LE. Use of canines to detect dried human blood and instrumental methods for determination of odor profiles. Proc Am Acad Forensic Sci. 2013;19:222–3.

    Google Scholar 

  15. Kusano M, Mendez E, Furton KG. Development of headspace SPME method for analysis of volatile organic compounds present in human biological specimens. Anal Bioanal Chem. 2011;400:1817–26.

    Article  CAS  PubMed  Google Scholar 

  16. Kusano M, Mendez E, Furton KG. Comparison of the volatile organic compounds from different biological specimens for profiling potential. J Forensic Sci. 2013;58:29–39.

    Article  CAS  PubMed  Google Scholar 

  17. Pawliszyn J, Lord HL. Handbook of sample preparation. New Jersey: Wiley; 2010.

    Google Scholar 

  18. Deng C, Zhang X, Li N. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry. J Chromatogr B. 2004;808:269–77.

    Article  CAS  Google Scholar 

  19. Prada A, Furton KG. Recent advances in solid-phase microextraction for forensic applications. In: Pawliszyn J, editor. Comprehensive sampling and sample preparation. Oxford: Academic Press; 2012. p. 877–91.

    Chapter  Google Scholar 

  20. Andreoli R, Manini P, Bergamaschi E, Brustolin A, Mutti A. Solid-phase microextraction and gas chromatography-mass spectrometry for determination of monoaromatic hydrocarbons in blood and urine: application to people exposed to air pollutants. Chromatographia. 1999;50:167–72.

    Article  CAS  Google Scholar 

  21. Blount BC, Kobelski RJ, McElprang DO, Ashley DL, Morrow JC, Chambers DM, Cardinali FL. Quantification of 31 volatile organic compounds in whole blood using solid-phase microextraction and gas chromatography-mass spectrometry. J Chromatogr B. 2006;832:292–301.

    Article  CAS  Google Scholar 

  22. Ashley DL, Bonin MA, Cardinali FL, McCraw JM, Wooten JV. Measurement of volatile organic compounds in human blood. Environ Health Perspect. 1996;104:871–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Dills RL, Kent SD, Checkoway H, Kalman DA. Quantification of volatile solvents in blood by static headspace analysis. Talanta. 1991;38:365–74.

    Article  CAS  PubMed  Google Scholar 

  24. Liu J, Hara K, Kashimura S, Kashiwagi M, Hamanaka T, Miyoshi A, Kageura M. Headspace solid-phase microextraction and gas chromatographic–mass spectrometric screening for volatile hydrocarbons in blood. J Chromatogr B. 2000;748:401–6.

    Article  CAS  Google Scholar 

  25. Miekisch W, Schubert JK, Vagts DA, Geiger K. Analysis of volatile disease markers in blood. Clin Chem. 2001;47:1053–60.

    CAS  PubMed  Google Scholar 

  26. Lit L, Crawford CA. Effects of training paradigms on search dog performance. Appl Anim Behav Sci. 2006;98:277–92.

    Article  Google Scholar 

  27. Schoon GAA. The effect of ageing of crime scene objects on the results of scent identification line-ups using trained dogs. Forensic Sci Int. 2005;147:43–7.

    Article  CAS  PubMed  Google Scholar 

  28. De Lacy CB, Amann A, Al-Kateb H, Flynn C, Fillipiak W, Khallid T, Osborne D, Ratcliffe NM. A review of the volatiles from the healthy human body. J Breath Res. 2014;8:1–29.

    Google Scholar 

  29. Api AM, Ford RA. Evaluation of the dermal subchronic toxicity of diphenyl ether in the rat. Food Chem Toxicol. 2003;41(259):264.

    Google Scholar 

  30. Inamdar AA, Hossain MM, Bernstein AI, Miller GW, Richardson JR, Bennett JW. Fungal-derived semiochemical 1-octen-3-ol disrupts dopamine packaging and causes neurodegeneration. Proc Natl Acad Sci USA. 2013;110:19561–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Harper RJ, Almirall JR, Furton KG. Identification of dominant odor chemicals emanating from explosives for use in developing optimal training aid combinations and mimics for canine detection. Talanta. 2005;67:313–27.

    Article  CAS  PubMed  Google Scholar 

  32. McLaughlin RW, Vali H, Lau PC, Palfree RG, De Ciccio A, Sirois M, Ahmad D, Villemur R, Desrosiers M, Chan EC. Are there naturally occurring pleomorphic bacteria in the blood of healthy humans? J Clin Microbiol. 2002;40:4771–5.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Parreira FV, De CC, De CZ. Evaluation of indoor exposition to benzene, toluene, ethylbenzene, xylene, and styrene by passive sampling with solid-phase microextraction device. J Chromatogr Sci. 2002;40:122–6.

    Article  CAS  PubMed  Google Scholar 

  34. Chambers DM, McElprang DO, Mauldin JP, Hughes TM, Blount BC. Identification and elimination of polysiloxane curing agent interference encountered in the quantification of low-picogram per milliliter methyl tert-butyl ether in blood by solid-phase microextraction headspace analysis. Anal Chem. 2005;77:2912–9.

    Article  CAS  PubMed  Google Scholar 

  35. Chambers DM, McElprang DO, Waterhouse MG, Bloiunt BC. An improved approach to accurate quantitation of benzene, toluene, ethylbenzene, xylene and styrene in blood. Anal Chem. 2006;78:5375–83.

    Article  CAS  PubMed  Google Scholar 

  36. Strumia MM, Colwell LC, Strumia PV. Preservation of whole blood in frozen state for transfusion. Science. 1958;128:1002–3.

    Article  CAS  PubMed  Google Scholar 

  37. Vaught JB. Blood collection, shipment, processing, and storage. Cancer Epidemiol Biomarkers Prev. 2006;15:1582–4.

    Article  CAS  PubMed  Google Scholar 

  38. Chambers DM, Blount BC, McElprang DO, Waterhouse MG, Morrow JC. Picogram measurement of volatile n-alkanes (n-hexane through n-dodecane) in blood using solid-phase microextraction to assess nonoccupational petroleum-based fuel exposure. Anal Chem. 2008;80:4666–74.

    Article  CAS  PubMed  Google Scholar 

  39. Alonso M, Castellanos M, Besalu E, Sanchez JM. A headspace needle-trap method for the analysis of volatile organic compounds in whole blood. J Chromatogr A. 2012;1252:23–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr David Bishop for instrument support in the UTS Centre for Chemical Technologies. This research was funded by the Australian Research Council (ARC) and by the University of Technology, Sydney (UTS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shari L. Forbes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forbes, S.L., Rust, L., Trebilcock, K. et al. Effect of age and storage conditions on the volatile organic compound profile of blood. Forensic Sci Med Pathol 10, 570–582 (2014). https://doi.org/10.1007/s12024-014-9610-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-014-9610-3

Keywords

Navigation