Skip to main content
Log in

Impact of Early and Late Visual Deprivation on the Structure of the Corpus Callosum: A Study Combining Thickness Profile with Surface Tensor-Based Morphometry

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Blindness represents a unique model to study how visual experience may shape the development of brain organization. Exploring how the structure of the corpus callosum (CC) reorganizes ensuing visual deprivation is of particular interest due to its important functional implication in vision (e.g., via the splenium of the CC). Moreover, comparing early versus late visually deprived individuals has the potential to unravel the existence of a sensitive period for reshaping the CC structure. Here, we develop a novel framework to capture a complete set of shape differences in the CC between congenitally blind (CB), late blind (LB) and sighted control (SC) groups. The CCs were manually segmented from T1-weighted brain MRI and modeled by 3D tetrahedral meshes. We statistically compared the combination of local area and thickness at each point between subject groups. Differences in area are found using surface tensor-based morphometry; thickness is estimated by tracing the streamlines in the volumetric harmonic field. Group differences were assessed on this combined measure using Hotelling’s T 2 test. Interestingly, we observed that the total callosal volume did not differ between the groups. However, our fine-grained analysis reveals significant differences mostly localized around the splenium areas between both blind groups and the sighted group (general effects of blindness) and, importantly, specific dissimilarities between the LB and CB groups, illustrating the existence of a sensitive period for reorganization. The new multivariate statistics also gave better effect sizes for detecting morphometric differences, relative to other statistics. They may boost statistical power for CC morphometric analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamson, C. L., Wood, A. G., Chen, J., Barton, S., Reutens, D. C., Pantelis, C., et al. (2011). Thickness profile generation for the corpus callosum using Laplace’s equation. Human Brain Mapping, 32(12), 2131–2140. doi:10.1002/hbm.21174.

    Article  PubMed  Google Scholar 

  • Amedi, A., Raz, N., Pianka, P., Malach, R., & Zohary, E. (2003). Early ‘visual’ cortex activation correlates with superior verbal memory performance in the blind. Nature Neuroscience, 6(7), 758–766. doi:10.1038/nn1072.

    Article  CAS  PubMed  Google Scholar 

  • Arsigny, V., Fillard, P., Pennec, X., & Ayache, N. (2006). Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine, 56(2), 411–421.

    Article  PubMed  Google Scholar 

  • Bakircioglu, M., Joshi, S., & Miller, M. I. (1999). Landmark matching on brain surfaces via large deformation diffeomorphisms on the sphere. Proceedings of SPIE Medical Imaging, 3661, 710–715.

    Google Scholar 

  • Bavelier, D., & Neville, H. J. (2002). Cross-modal plasticity: where and how? Nature Reviews Neuroscience, 3(6), 443–452. doi:10.1038/nrn848.

    CAS  PubMed  Google Scholar 

  • Bedny, M., Pascual-Leone, A., Dodell-Feder, D., Fedorenko, E., & Saxe, R. (2011). Language processing in the occipital cortex of congenitally blind adults. Proceedings of the National Academy of Sciences of the United States of America, 108(11), 4429–4434. doi:10.1073/pnas.1014818108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belluck, P. (2013). Device offers partial vision for the blind. The New York Times.

  • Bock, A. S., & Olavarria, J. F. (2011). Neonatal enucleation during a critical period reduces the precision of cortico-cortical projections in visual cortex. Neuroscience Letters, 501(3), 152–156. doi:10.1016/j.neulet.2011.07.005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bock, A. S., Olavarria, J. F., Leigland, L. A., Taber, E. N., Jespersen, S. N., & Kroenke, C. D. (2010). Diffusion tensor imaging detects early cerebral cortex abnormalities in neuronal architecture induced by bilateral neonatal enucleation: an experimental model in the ferret. Frontiers in Systems Neuroscience, 4, 149. doi:10.3389/fnsys.2010.00149.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bock, A. S., Kroenke, C. D., Taber, E. N., & Olavarria, J. F. (2012). Retinal input influences the size and corticocortical connectivity of visual cortex during postnatal development in the ferret. Journal of Comparative Neurology, 520(5), 914–932. doi:10.1002/cne.22738.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bock, A. S., Saenz, M., Tungaraza, R., Boynton, G. M., Bridge, H., & Fine, I. (2013). Visual callosal topography in the absence of retinal input. NeuroImage, 81, 325–334. doi:10.1016/j.neuroimage.2013.05.038.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bridge, H., Cowey, A., Ragge, N., & Watkins, K. (2009). Imaging studies in congenital anophthalmia reveal preservation of brain architecture in ‘visual’ cortex. Brain, 132(Pt 12), 3467–3480. doi:10.1093/brain/awp279.

    Article  PubMed  Google Scholar 

  • Caleo, M., Innocenti, G. M., & Ptito, M. (2013). Physiology and plasticity of interhemispheric connections. Neural Plasticity, 2013, 176183. doi:10.1155/2013/176183.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chan, K. C., Cheng, J. S., Fan, S., Zhou, I. Y., Yang, J., & Wu, E. X. (2012). In vivo evaluation of retinal and callosal projections in early postnatal development and plasticity using manganese-enhanced MRI and diffusion tensor imaging. NeuroImage, 59(3), 2274–2283. doi:10.1016/j.neuroimage.2011.09.055.

    Article  PubMed  Google Scholar 

  • Chung, M. K. (2012). Computational neuroanatomy: The methods. World Scientific Publishing Company.

  • Chung, M. K., Dalton, K. M., & Davidson, R. J. (2008). Tensor-based cortical surface morphometry via weighted spherical harmonic representation. IEEE Transactions on Medical Imaging, 27(8), 1143–1151.

    Article  PubMed  Google Scholar 

  • Collignon, O., Voss, P., Lassonde, M., & Lepore, F. (2009). Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Experimental Brain Research, 192(3), 343–358. doi:10.1007/s00221-008-1553-z.

    Article  PubMed  Google Scholar 

  • Collignon, O., Champoux, F., Voss, P., & Lepore, F. (2011a). Sensory rehabilitation in the plastic brain. Progress in Brain Research, 191, 211–231. doi:10.1016/B978-0-444-53752-2.00003-5.

    PubMed  Google Scholar 

  • Collignon, O., Vandewalle, G., Voss, P., Albouy, G., Charbonneau, G., Lassonde, M., et al. (2011b). Functional specialization for auditory-spatial processing in the occipital cortex of congenitally blind humans. Proceedings of the National Academy of Sciences of the United States of America, 108(11), 4435–4440. doi:10.1073/pnas.1013928108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collignon, O., Dormal, G., Albouy, G., Vandewalle, G., Voss, P., Phillips, C., et al. (2013a). Impact of blindness onset on the functional organization and the connectivity of the occipital cortex. Brain, 136(Pt 9), 2769–2783. doi:10.1093/brain/awt176.

    Article  PubMed  Google Scholar 

  • Collignon, O., Dormal, G., & Lepore, F. (2013b). Building the brain in the dark: Functional and specific crossmodal reorganization in the occipital cortex of blind individuals. In M. Jenkin, J. Steeves, & L. Harris (Eds.), Plasticity in sensory systems. Cambridge: Cambridge University Press.

    Google Scholar 

  • Colom, R., Stein, J. L., Rajagopalan, L., Martínez, K., Hermel, D., Wang, Y., et al. (2013). Hippocampal structure and human cognition: key role of spatial processing and evidence supporting the efficiency hypothesis in females. Intelligence, in press.

  • Davatzikos, C. (1996). Spatial normalization of 3D brain images using deformable models. Journal of Computer Assisted Tomography , 20(4), 656–665.

    Article  CAS  PubMed  Google Scholar 

  • Davatzikos, C., Vaillant, M., Resnick, S. M., Prince, J. L., Letovsky, S., & Bryan, R. N. (1996). A computerized approach for morphological analysis of the corpus callosum. Journal of Computer Assisted Tomography, 20(1), 88–97.

    Article  CAS  PubMed  Google Scholar 

  • Di Paola, M., Luders, E., Cherubini, A., Sanchez-Castaneda, C., Thompson, P. M., Toga, A. W., et al. (2012). Multimodal MRI analysis of the corpus callosum reveals white matter differences in presymptomatic and early Huntington’s disease. Cerebral Cortex, 22(12), 2858–2866. doi:10.1093/cercor/bhr360.

    Article  PubMed  Google Scholar 

  • Dormal, G., Lepore, F., & Collignon, O. (2012). Plasticity of the dorsal “spatial” stream in visually deprived individuals. Neural Plasticity, 2012, 687659. doi:10.1155/2012/687659.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dougherty, R. F., Ben-Shachar, M., Bammer, R., Brewer, A. A., & Wandell, B. A. (2005). Functional organization of human occipital-callosal fiber tracts. Proceedings of the National Academy of Sciences of the United States of America, 102(20), 7350–7355. doi:10.1073/pnas.0500003102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elad, M., Milanfar, P., & Golub, G. H. (2004). Shape from moments - an estimation theory perspective. Transactions on Signal Processing , 52(7), 1814–1829. doi:10.1109/tsp.2004.828919.

    Article  Google Scholar 

  • Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis II: inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2), 195–207.

    Article  CAS  PubMed  Google Scholar 

  • Fish, S. E., Rhoades, R. W., Bennett-Clarke, C. A., Figley, B., & Mooney, R. D. (1991). Organization, development and enucleation-induced alterations in the visual callosal projection of the hamster: single axon tracing with phaseolus vulgaris leucoagglutinin and Di-I. European Journal of Neuroscience, 3(12), 1255–1270.

    Article  PubMed  Google Scholar 

  • Gu, X., Wang, Y., Chan, T. F., Thompson, P. M., & Yau, S.-T. (2004). Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Transactions on Medical Imaging, 23(8), 949–958.

    Article  PubMed  Google Scholar 

  • He, Q., Duan, Y., Yin, X., Gu, X., Karsch, K., & Miles, J. (2009) Shape analysis of corpus callosum in autism subtype using planar conformal mapping. SPIE, Medical Imaging, 7262. doi:10.1117/12.812285.

  • Heimler, B., Weisz, N., Collignon, O. (2014) Revisiting the adaptive and maladaptive effects of crossmodal plasticity. Neuroscience, 283, 44–63.

  • Herron, T. J., Kang, X., & Woods, D. L. (2012). Automated measurement of the human corpus callosum using MRI. Frontiers in Neuroinformatics , 6, 25. doi:10.3389/fninf.2012.00025.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hofer, S., & Frahm, J. (2006). Topography of the human corpus callosum revisited–comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage, 32(3), 989–994. doi:10.1016/j.neuroimage.2006.05.044.

    Article  PubMed  Google Scholar 

  • Hua, X., Leow, A. D., Levitt, J. G., Caplan, R., Thompson, P. M., & Toga, A. W. (2009). Detecting brain growth patterns in normal children using tensor-based morphometry. Human Brain Mapping, 30(1), 209–219. doi:10.1002/hbm.20498.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5(2), 143–156.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, J., Zhu, W., Shi, F., Liu, Y., Li, J., Qin, W., et al. (2009). Thick visual cortex in the early blind. Journal of Neuroscience, 29(7), 2205–2211. doi:10.1523/JNEUROSCI. 5451-08.2009.

    Article  CAS  PubMed  Google Scholar 

  • Jones, S. E., Buchbinder, B. R., & Aharon, I. (2000). Three-dimensional mapping of cortical thickness using Laplace’s equation. Human Brain Mapping, 11(1), 12–32.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, S. H., Narr, K. L., Philips, O. R., Nuechterlein, K. H., Asarnow, R. F., Toga, A. W., et al. (2013). Statistical shape analysis of the corpus callosum in Schizophrenia. NeuroImage, 64, 547–559. doi:10.1016/j.neuroimage.2012.09.024.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lederman, C., Joshi, A., Dinov, I., Vese, L., Toga, A., & Van Horn, J. D. (2011). The generation of tetrahedral mesh models for neuroanatomical MRI. NeuroImage, 55(1), 153–164. doi:10.1016/j.neuroimage.2010.11.013.

    Article  PubMed Central  PubMed  Google Scholar 

  • Leporé, N., Brun, C., Chou, Y.-Y., Chiang, M.-C., Dutton, R. A., Hayashi, K. M., et al. (2008). Generalized tensor-based morphometry of HIV/AIDS using multivariate statistics on deformation tensors. IEEE Transactions on Medical Imaging, 27(1), 129–141.

    Article  PubMed Central  PubMed  Google Scholar 

  • Leporé, N., Shi, Y., Lepore, F., Fortin, M., Voss, P., Chou, Y. Y., et al. (2009). Pattern of hippocampal shape and volume differences in blind subjects. NeuroImage, 46(4), 949–957. doi:10.1016/j.neuroimage.2009.01.071.

    Article  PubMed Central  PubMed  Google Scholar 

  • Leporé, N., Voss, P., Lepore, F., Chou, Y. Y., Fortin, M., Gougoux, F., et al. (2010). Brain structure changes visualized in early- and late-onset blind subjects. NeuroImage, 49(1), 134–140. doi:10.1016/j.neuroimage.2009.07.048.

    Article  PubMed Central  PubMed  Google Scholar 

  • Levin, N., Dumoulin, S. O., Winawer, J., Dougherty, R. F., & Wandell, B. A. (2010). Cortical maps and white matter tracts following long period of visual deprivation and retinal image restoration. Neuron, 65(1), 21–31. doi:10.1016/j.neuron.2009.12.006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li, X., Guo, X., Wang, H., He, Y., Gu, X., & Qin, H. (2007). Harmonic volumetric mapping for solid modeling applications. Paper presented at the Proceedings of the 2007 ACM symposium on Solid and physical modeling, Beijing, China.

  • Li, B., Li, X., Wang, K., & Qin, H. (2013). Surface mesh to volumetric spline conversion with generalized polycubes. IEEE Transactions on Visualization and Computer Graphics, 19(9), 1539–1551. doi:10.1109/tvcg.2012.177.

    Article  PubMed  Google Scholar 

  • Lombaert, H., Grady, L., Polimeni, J. R., & Cheriet, F. (2013). FOCUSR: feature oriented correspondence using spectral regularization - a method for accurate surface matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9), 2143–2160.

    Article  PubMed  Google Scholar 

  • Luders, E., Narr, K. L., Zaidel, E., Thompson, P. M., Jancke, L., & Toga, A. W. (2006). Parasagittal asymmetries of the corpus callosum. Cerebral Cortex, 16(3), 346–354. doi:10.1093/cercor/bhi112.

    Article  CAS  PubMed  Google Scholar 

  • Luders, E., Thompson, P. M., & Toga, A. W. (2010). The development of the corpus callosum in the healthy human brain. Journal of Neuroscience, 30(33), 10985–10990. doi:10.1523/JNEUROSCI. 5122-09.2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Merabet, L. B., Rizzo, J. F., Amedi, A., Somers, D. C., & Pascual-Leone, A. (2005). What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses. Nature Reviews Neuroscience, 6(1), 71–77. doi:10.1038/nrn1586.

    Article  CAS  PubMed  Google Scholar 

  • Merabet, L. B., Rizzo, J. F., 3rd, Pascual-Leone, A., & Fernandez, E. (2007). ‘Who is the ideal candidate?’: decisions and issues relating to visual neuroprosthesis development, patient testing and neuroplasticity. Journal of Neural Engineering, 4(1), S130–S135. doi:10.1088/1741-2560/4/1/S15.

    Article  PubMed  Google Scholar 

  • Monje, M., Thomason, M. E., Rigolo, L., Wang, Y., Waber, D. P., Sallan, S. E., et al. (2013). Functional and structural differences in the hippocampus associated with memory deficits in adult survivors of acute lymphoblastic leukemia. Pediatric Blood & Cancer, 60(2), 293–300. doi:10.1002/pbc.24263.

    Article  Google Scholar 

  • Noppeney, U. (2007). The effects of visual deprivation on functional and structural organization of the human brain. Neuroscience and Biobehavioral Reviews, 31(8), 1169–1180. doi:10.1016/j.neubiorev.2007.04.012.

    Article  PubMed  Google Scholar 

  • Noppeney, U., Friston, K. J., Ashburner, J., Frackowiak, R., & Price, C. J. (2005). Early visual deprivation induces structural plasticity in gray and white matter. Current Biology, 15(13), R488–R490. doi:10.1016/j.cub.2005.06.053.

    Article  CAS  PubMed  Google Scholar 

  • Olavarria, J. F., & Van Sluyters, R. C. (1995). Overall pattern of callosal connections in visual cortex of normal and enucleated cats. Journal of Comparative Neurology, 363(2), 161–176. doi:10.1002/cne.903630202.

    Article  CAS  PubMed  Google Scholar 

  • Olavarria, J., Malach, R., & Van Sluyters, R. C. (1987). Development of visual callosal connections in neonatally enucleated rats. Journal of Comparative Neurology, 260(3), 321–348. doi:10.1002/cne.902600302.

    Article  CAS  PubMed  Google Scholar 

  • Pai, D., Soltanian-Zadeh, H., & Hua, J. (2011). Evaluation of fiber bundles across subjects through brain mapping and registration of diffusion tensor data. NeuroImage, 54(Suppl 1), S165–S175. doi:10.1016/j.neuroimage.2010.05.085.

    Article  PubMed  Google Scholar 

  • Paillé, G.-P., & Poulin, P. (2012). SMI 2012: full as-conformal-as-possible discrete volumetric mapping. Computers and Graphics, 36(5), 427–433. doi:10.1016/j.cag.2012.03.014.

    Article  Google Scholar 

  • Pan, W. J., Wu, G., Li, C. X., Lin, F., Sun, J., & Lei, H. (2007). Progressive atrophy in the optic pathway and visual cortex of early blind Chinese adults: a voxel-based morphometry magnetic resonance imaging study. NeuroImage, 37(1), 212–220. doi:10.1016/j.neuroimage.2007.05.014.

    Article  PubMed  Google Scholar 

  • Pandya, D. N., Karol, E. A., & Heilbronn, D. (1971). The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey. Brain Research, 32(1), 31–43.

    Article  CAS  PubMed  Google Scholar 

  • Park, H. J., Jeong, S. O., Kim, E. Y., Kim, J. I., Park, H., Oh, M. K., et al. (2007). Reorganization of neural circuits in the blind on diffusion direction analysis. Neuroreport, 18(17), 1757–1760. doi:10.1097/WNR.0b013e3282f13e66.

    Article  PubMed  Google Scholar 

  • Park, H. J., Lee, J. D., Kim, E. Y., Park, B., Oh, M. K., Lee, S., et al. (2009). Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area. NeuroImage, 47(1), 98–106. doi:10.1016/j.neuroimage.2009.03.076.

    Article  PubMed  Google Scholar 

  • Ptito, M., Schneider, F. C., Paulson, O. B., & Kupers, R. (2008). Alterations of the visual pathways in congenital blindness. Experimental Brain Research, 187(1), 41–49. doi:10.1007/s00221-008-1273-4.

    Article  PubMed  Google Scholar 

  • Qin, W., Liu, Y., Jiang, T., & Yu, C. (2013). The development of visual areas depends differently on visual experience. PloS One, 8(1), e53784. doi:10.1371/journal.pone.0053784.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qiu, A., Bitouk, D., & Miller, M. I. (2006a). Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator. IEEE Transactions on Medical Imaging, 25(10), 1296–1306.

    Article  PubMed  Google Scholar 

  • Qiu, A., Rosenau, B. J., Greenberg, A. S., Hurdal, M. K., Barta, P., Yantis, S., et al. (2006b). Estimating linear cortical magnification in human primary visual cortex via dynamic programming. NeuroImage, 31(1), 125–138. doi:10.1016/j.neuroimage.2005.11.049.

    Article  PubMed  Google Scholar 

  • Ricciardi, E., & Pietrini, P. (2011). New light from the dark: what blindness can teach us about brain function. Current Opinion in Neurology, 24(4), 357–363. doi:10.1097/WCO.0b013e328348bdbf.

    Article  PubMed  Google Scholar 

  • Shi, Y., Lai, R., Morra, J. H., Dinov, I., Thompson, P. M., & Toga, A. W. (2010). Robust surface reconstruction via Laplace-Beltrami eigen-projection and boundary deformation. IEEE Transactions on Medical Imaging, 29(12), 2009–2022. doi:10.1109/TMI.2010.2057441.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shi, J., Thompson, P. M., Gutman, B., & Wang, Y. (2013a). Surface fluid registration of conformal representation: application to detect disease burden and genetic influence on hippocampus. NeuroImage, 78C, 111–134. doi:10.1016/j.neuroimage.2013.04.018.

    Article  Google Scholar 

  • Shi, J., Wang, Y., Ceschin, R., An, X., Lao, Y., Vanderbilt, D., et al. (2013b). A multivariate surface-based analysis of the putamen in premature newborns: regional differences within the ventral striatum. PloS One, 8(7), e66736. doi:10.1371/journal.pone.0066736.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi, R., Zeng, W., Su, Z., Damasio, H., Lu, Z., Wang, Y., et al. (2013c, June) Hyperbolic Harmonic Mapping for Constrained Brain Registration. In IEEE Conf. Comp. Vis. Patt. Recog. CVPR’13.

  • Shi, J., Lepore, N., Gutman, B. A., Thompson, P. M., Baxter, L. C., Caselli, R. L., et al. (2014). Genetic influence of apolipoprotein E4 genotype on hippocampal morphometry: an N = 725 surface-based Alzheimer’s disease neuroimaging initiative study. Human Brain Mapping. doi:10.1002/hbm.22447.

    Google Scholar 

  • Shimony, J. S., Burton, H., Epstein, A. A., McLaren, D. G., Sun, S. W., & Snyder, A. Z. (2006). Diffusion tensor imaging reveals white matter reorganization in early blind humans. Cerebral Cortex, 16(11), 1653–1661. doi:10.1093/cercor/bhj102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shu, N., Li, J., Li, K., Yu, C., & Jiang, T. (2009). Abnormal diffusion of cerebral white matter in early blindness. Human Brain Mapping, 30(1), 220–227. doi:10.1002/hbm.20507.

    Article  PubMed  Google Scholar 

  • Sieving, P. A., Caruso, R. C., Tao, W., Coleman, H. R., Thompson, D. J. S., Fullmer, K. R., et al. (2006). Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3896–3901. doi:10.1073/pnas.0600236103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steele, C. J., Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2013). Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. Journal of Neuroscience, 33(3), 1282–1290. doi:10.1523/JNEUROSCI. 3578-12.2013.

    Article  CAS  PubMed  Google Scholar 

  • Styner, M., Lieberman, J. A., McClure, R. K., Weinberger, D. R., Jones, D. W., & Gerig, G. (2005a). Morphometric analysis of lateral ventricles in schizophrenia and healthy controls regarding genetic and disease-specific factors. Proceedings of the National Academy of Sciences of the United States of America, 102(13), 4872–4877.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Styner, M. A., Oguz, I., Smith, R. G., Cascio, C., & Jomier, M. (2005b). Corpus callosum subdivision based on a probabilistic model of inter-hemispheric connectivity. Medical Image Computing and Computer-Assisted Intervention, 8(Pt 2), 765–772.

    PubMed  Google Scholar 

  • Tan, Y., Hua, J., & Qin, H. (2010). Physically based modeling and simulation with dynamic spherical volumetric simplex splines. Computer-Aided Design, 42(2), 95–108. doi:10.1016/j.cad.2009.02.014.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tepest, R., Jacobi, E., Gawronski, A., Krug, B., Moller-Hartmann, W., Lehnhardt, F. G., et al. (2010). Corpus callosum size in adults with high-functioning autism and the relevance of gender. Psychiatry Research, 183(1), 38–43. doi:10.1016/j.pscychresns.2010.04.007.

    Article  PubMed  Google Scholar 

  • Thompson, P. M., Giedd, J. N., Woods, R. P., MacDonald, D., Evans, A. C., & Toga, A. W. (2000). Growth patterns in the developing human brain detected using continuum-mechanical tensor mapping. Nature, 404(6774), 190–193.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, P. M., Narr, K. L., Blanton, R. E., & Toga, A. W. (2003). Mapping structural alterations of the corpus callosum during brain development and degeneration. In E. Zaidel & M. Iacobini (Eds.), The parallel brain: The cognitive neuroscience of the corpus callosum (pp. 93–130). Cambridge: The MIT Press.

    Google Scholar 

  • Thompson, P. M., Hayashi, K. M., de Zubicaray, G. I., Janke, A. L., Rose, S. E., Semple, J., et al. (2004a). Mapping hippocampal and ventricular change in Alzheimer’s disease. NeuroImage, 22(4), 1754–1766.

    Article  PubMed  Google Scholar 

  • Thompson, P. M., Hayashi, K. M., Sowell, E. R., Gogtay, N., Giedd, J. N., Rapoport, J. L., et al. (2004b). Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia. NeuroImage, 23(Supplement 1), S2–S18.

    Article  PubMed  Google Scholar 

  • Thompson, P. M., Dutton, R. A., Hayashi, K. M., Lu, A., Lee, S. E., Lee, J. Y., et al. (2006). 3D mapping of ventricular and corpus callosum abnormalities in HIV/AIDS. NeuroImage, 31(1), 12–23. doi:10.1016/j.neuroimage.2005.11.043.

    Article  PubMed  Google Scholar 

  • Tomaiuolo, F., Campana, S., Collins, D. L., Fonov, V. S., Ricciardi, E., Sartori, G., et al. (2014). Morphometric changes of the corpus callosum in congenital blindness. PloS One, 9(9), e107871. doi:10.1371/journal.pone.0107871.

    Article  PubMed Central  PubMed  Google Scholar 

  • Veraart, C., Duret, F., Brelen, M., Oozeer, M., & Delbeke, J. (2004). Vision rehabilitation in the case of blindness. Expert Review of Medical Devices, 1(1), 139–153. doi:10.1586/17434440.1.1.139.

    Article  PubMed  Google Scholar 

  • Vidal, C. N., Nicolson, R., DeVito, T. J., Hayashi, K. M., Geaga, J. A., Drost, D. J., et al. (2006). Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity. Biological Psychiatry, 60(3), 218–225. doi:10.1016/j.biopsych.2005.11.011.

    Article  PubMed  Google Scholar 

  • Voss, P., & Zatorre, R. J. (2012). Occipital cortical thickness predicts performance on pitch and musical tasks in blind individuals. Cerebral Cortex, 22(11), 2455–2465. doi:10.1093/cercor/bhr311.

    Article  PubMed  Google Scholar 

  • Voss, P., Fortin, M., Corbo, V., Pruessner, J. C., & Lepore, F. (2013). Assessment of the caudate nucleus and its relation to route learning in both congenital and late blind individuals. BMC Neuroscience, 14, 113. doi:10.1186/1471-2202-14-113.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang, Y., Gu, X., Chan, T. F., Thompson, P. M., & Yau, S.-T. (2004a). Volumetric harmonic brain mapping. Paper presented at the Biomedical Imaging: Nano to Macro, 2004. IEEE International Symposium on.

  • Wang, Y., Gu, X., & Yau, S.-T. (2004b). Volumetric harmonic map. Communications in Information and Systems, 3(3), 191–202.

    Google Scholar 

  • Wang, Y., Zhang, J., Gutman, B., Chan, T. F., Becker, J. T., Aizenstein, H. J., et al. (2010). Multivariate tensor-based morphometry on surfaces: application to mapping ventricular abnormalities in HIV/AIDS. NeuroImage, 49(3), 2141–2157. doi:10.1016/j.neuroimage.2009.10.086.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang, Y., Song, Y., Rajagopalan, P., An, T., Liu, K., Chou, Y. Y., et al. (2011). Surface-based TBM boosts power to detect disease effects on the brain: an N = 804 ADNI study. NeuroImage, 56(4), 1993–2010. doi:10.1016/j.neuroimage.2011.03.040.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang, K., Li, X., Li, B., Xu, H., & Qin, H. (2012a). Restricted trivariate polycube splines for volumetric data modeling. IEEE Transactions on Visualization and Computer Graphics, 18(5), 703–716. doi:10.1109/TVCG.2011.102.

    Article  PubMed  Google Scholar 

  • Wang, Y., Panigrahy, A., Shi, J., Ceschin, R., Nie, Z., Nelson, M. D., et al. (2012b) 3D vs. 2D surface shape analysis of the corpus collosum in premature neonates. In MICCAI: Workshop on Paediatric and Perinatal Imaging, Nice, France.

  • Wang, Y., Shi, J., Yin, X., Gu, X., Chan, T. F., Yau, S.-T., et al. (2012c). Brain surface conformal parameterization with the Ricci flow. IEEE Transactions on Medical Imaging, 31(2), 251–264.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, D., Qin, W., Liu, Y., Zhang, Y., Jiang, T., & Yu, C. (2013a). Altered white matter integrity in the congenital and late blind people. Neural Plasticity, 2013, 128236. doi:10.1155/2013/128236.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang, G., Li, J., Chen, J., Wang, L., Jiang, Z., Su, Q., et al. (2013b). A heat kernel based brain grey matter morphometry system. Paper presented at the 3rd MICCAI Workshop on Multimodal Brain Image Analysis (MBIA).

  • Wang, Y., Yuan, L., Shi, J., Greve, A., Ye, J., Toga, A. W., et al. (2013c). Applying tensor-based morphometry to parametric surfaces can improve MRI-based disease diagnosis. NeuroImage, 74, 209–230. doi:10.1016/j.neuroimage.2013.02.011.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wüstefeld, T. (2010). bilderzucht - blog. http://www.bilderzucht.de/blog/3d-pixel-voxel.

  • Xu, L. (2013). Combining thickness information with surface tensor-based morphometry for the 3D statistical analysis of the corpus callosum. Master Thesis, Arizona State University, Tempte, AZ.

  • Xu, H., Yu, W., Gu, S., & Li, X. (2013a). Biharmonic volumetric mapping using fundamental solutions. IEEE Transactions on Visualization and Computer Graphics, 19(5), 787–798. doi:10.1109/TVCG.2012.173.

    Article  PubMed  Google Scholar 

  • Xu, L., Collignon, O., Wang, G., Kang, Y., Leporé, F., Shi, J., et al. (2013b). Combining Thickness Information with Surface Tensor-based Morphometry for the 3D Statistical Analysis of the Corpus Callosum. Paper presented at the 4th MICCAI Workshop on Mathematical Foundations of Computational Anatomy (MFCA).

  • Yeo, B. T., Sabuncu, M. R., Vercauteren, T., Ayache, N., Fischl, B., & Golland, P. (2010). Spherical demons: fast diffeomorphic landmark-free surface registration. IEEE Transactions on Medical Imaging, 29(3), 650–668. doi:10.1109/TMI.2009.2030797.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu, C., Shu, N., Li, J., Qin, W., Jiang, T., & Li, K. (2007). Plasticity of the corticospinal tract in early blindness revealed by quantitative analysis of fractional anisotropy based on diffusion tensor tractography. NeuroImage, 36(2), 411–417. doi:10.1016/j.neuroimage.2007.03.003.

    Article  PubMed  Google Scholar 

  • Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., et al. (2006). User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage, 31(3), 1116–1128. doi:10.1016/j.neuroimage.2006.01.015.

    Article  PubMed  Google Scholar 

  • Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nature Neuroscience, 15(4), 528–536. doi:10.1038/nn.3045.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Institute on Aging (R21AG043760 to LX, JS and YW), the National Institute for Biomedical Imaging and Bioengineering (R21EB012177 to YL and NL), the Arizona Alzheimer’s Consortium (ADHS14-052688 to YW), the National Science Foundation (DMS-1413417, IIS-1421165 to YW), the joint special fund of Shandong province Natural Science Fundation (ZR2013FL008 to GW) and the European Research Council starting grant MADVIS (ERC-StG 337573 to OC). YW is also supported, in part, by U54 EB020403 (the “Big Data to Knowledge” Program), supported by the National Cancer Institute (NCI), the NIBIB and a cross-NIH Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalin Wang.

Additional information

Natasha Leporé and Yalin Wang are equal senior authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Collignon, O., Xu, L. et al. Impact of Early and Late Visual Deprivation on the Structure of the Corpus Callosum: A Study Combining Thickness Profile with Surface Tensor-Based Morphometry. Neuroinform 13, 321–336 (2015). https://doi.org/10.1007/s12021-014-9259-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-014-9259-9

Keywords

Navigation