Skip to main content

Advertisement

Log in

Unraveling the connection between Hashimoto’s Thyroiditis and non-alcoholic fatty liver disease: exploring the role of CD4+central memory T cells through integrated genetic approaches

  • Research
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Exploring the connection between Hashimoto’s thyroiditis (HT) and non-alcoholic fatty liver disease (NAFLD) through integrated genetic approaches.

Methods

We utilized integrated genetic approaches, such as single-cell RNA sequencing (scRNA-seq) data analysis, Mendelian Randomization (MR), colocalization analysis, cell communication, and metabolic analyses, to investigate potential correlations between HT and NAFLD.

Results

Through the integrated analysis of scRNA-seq data from individuals with HT, NAFLD, and healthy controls, we observed an upregulation in the proportion of CD4+central memory (CD4+CM) T cells among T cells in both diseases. A total of 63 differentially expressed genes (DEGs) were identified in the CD4+CM cells after the differential analysis. By using MR, 8 DEGs (MAGI3, CSGALNACT1, CAMK4, GRIP1, TRAT1, IL7R, ERN1, and MB21D2) were identified to have a causal relationship with HT, and 4 DEGs (MAGI3, RCAN3, DOCK10, and SAMD12) had a causal relationship with NAFLD. MAGI3 was found to be causally linked to both HT and NAFLD. Therefore, MAGI3 was designated as the marker gene. Reverse MR and Steiger filtering showed no evidence of reverse causality. Colocalization analyses further indicated close links between MAGI3 and HT as well as NAFLD. Finally, based on the expression levels of MAGI3, we stratified CD4+CM cells into two subsets: MAGI3+CD4+CM cells and MAGI3CD4+CM cells. Functional analyses revealed significant differences between the two subsets, potentially related to the progression of the two diseases.

Conclusion

This study delves into the potential connections between HT and NAFLD through integrated genetic methods. Our research reveals an elevated proportion of CD4+CM cells within T cells in both HT and NAFLD. Through MR and colocalization analysis, we identify specific genes causally linked to HT and NAFLD, such as MAGI3. Ultimately, based on MAGI3 expression levels, we categorize CD4+CM cells into MAGI3+CD4+CM cells and MAGI3CD4+CM cells, uncovering significant differences between them through functional analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article. Please refer to the supplementary materials for additional data related to this study.

References

  1. G. Batóg, A. Dołoto, E. Bąk, I. Piątkowska-Chmiel, P. Krawiec, E. Pac-Kożuchowska et al. The interplay of oxidative stress and immune dysfunction in Hashimoto’s thyroiditis and polycystic ovary syndrome: a comprehensive review. Fronti. Immunol. 14, 1211231 (2023). https://doi.org/10.3389/fimmu.2023.1211231.

  2. P. Caturegli, A. De Remigis, N.R. Rose, Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun. Rev. 13, 391–397 (2014). https://doi.org/10.1016/j.autrev.2014.01.007

    Article  CAS  PubMed  Google Scholar 

  3. J. Qin, Z. Yu, H. Guan, L. Shi, Y. Liu, N. Zhao et al. High thyroglobulin antibody levels increase the risk of differentiated thyroid carcinoma. Dis. Markers 2015, e648670 (2015). https://doi.org/10.1155/2015/648670

    Article  CAS  Google Scholar 

  4. B. Jankovic, K.T. Le, J.M. Hershman, Hashimoto’s thyroiditis and papillary thyroid carcinoma: is there a correlation? J. Clin. Endocrinol. Metab. 98, 474–482 (2013). https://doi.org/10.1210/jc.2012-2978

    Article  CAS  PubMed  Google Scholar 

  5. N. Prinzi, S. Sorrenti, E. Baldini, C.D. Vito, C. Tuccilli, A. Catania et al. Association of thyroid diseases with primary extra-thyroidal malignancies in women: results of a cross-sectional study of 6,386 patients. PLOS one 10, e0122958 (2015). https://doi.org/10.1371/journal.pone.0122958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. E.E. Powell, V.W.-S. Wong, M. Rinella, Non-alcoholic fatty liver disease. Lancet 397, 2212–2224 (2021). https://doi.org/10.1016/S0140-6736(20)32511-3

    Article  CAS  PubMed  Google Scholar 

  7. Z. Younossi, Q.M. Anstee, M. Marietti, T. Hardy, L. Henry, M. Eslam et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15, 11–20 (2018). https://doi.org/10.1038/nrgastro.2017.109

    Article  PubMed  Google Scholar 

  8. P. Vidal-Cevallos, S. Murúa-Beltrán Gall, M. Uribe, N.C. Chávez-Tapia. Understanding the relationship between nonalcoholic fatty liver disease and thyroid disease. Int. J. Mol. Sci. 24, (2023). https://doi.org/10.3390/ijms241914605.

  9. S. Elshinshawy, H. Elhaddad, S. Abdel Alem, O. Shaker, R. Salam, A. Yosry et al. The interrelation between hypothyroidism and non-alcoholic fatty liver disease, a cross-sectional study. J. Clin. Exp. Hepatol. 13, 638–648 (2023). https://doi.org/10.1016/j.jceh.2023.03.004

    Article  CAS  PubMed  Google Scholar 

  10. G.E. Chung, D. Kim, W. Kim, J.Y. Yim, M.J. Park, Y.J. Kim et al. Non-alcoholic fatty liver disease across the spectrum of hypothyroidism. J. Hepatol. 57, 150–156 (2012). https://doi.org/10.1016/j.jhep.2012.02.027

    Article  CAS  PubMed  Google Scholar 

  11. A. Eshraghian, M.H. Dabbaghmanesh, H. Eshraghian, M.R. Fattahi, G.R. Omrani, Nonalcoholic fatty liver disease in a cluster of Iranian population: thyroid status and metabolic risk factors. Arch. Iran. Med. 16, 584–589 (2013)

    PubMed  Google Scholar 

  12. W. He, X. An, L. Li, X. Shao, Q. Li, Q. Yao et al. Relationship between hypothyroidism and non-alcoholic fatty liver disease: a systematic review and meta-analysis. Front. Endocrinol. 8, 335 (2017). https://doi.org/10.3389/fendo.2017.00335

    Article  Google Scholar 

  13. M. Su, T. Pan, Q.-Z. Chen, W.-W. Zhou, Y. Gong, G. Xu et al. Data analysis guidelines for single-cell RNA-seq in biomedical studies and clinical applications. Mil. Med. Res. 9, 68 (2022). https://doi.org/10.1186/s40779-022-00434-8

    Article  PubMed  PubMed Central  Google Scholar 

  14. Q.-Y. Zhang, X.-P. Ye, Z. Zhou, C.-F. Zhu, R. Li, Y. Fang et al. Lymphocyte infiltration and thyrocyte destruction are driven by stromal and immune cell components in Hashimoto’s thyroiditis. Nat. Commun. 13, 775 (2022). https://doi.org/10.1038/s41467-022-28120-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. C.-Y. Ng, K.L. Lee, M.D. Muthiah, K.X. Wu, F.W.J. Chioh, K. Tan et al. Endothelial-immune crosstalk contributes to vasculopathy in nonalcoholic fatty liver disease. EMBO Rep. 23, e54271 (2022). https://doi.org/10.15252/embr.202154271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. I. Korsunsky, N. Millard, J. Fan, K. Slowikowski, F. Zhang, K. Wei et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019). https://doi.org/10.1038/s41592-019-0619-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D. Aran, A.P. Looney, L. Liu, E. Wu, V. Fong, A. Hsu et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019). https://doi.org/10.1038/s41590-018-0276-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. L. Zhang, X. Yu, L. Zheng, Y. Zhang, Y. Li, Q. Fang et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564, 268–272 (2018). https://doi.org/10.1038/s41586-018-0694-x

    Article  ADS  CAS  PubMed  Google Scholar 

  19. K. Street, D. Risso, R.B. Fletcher, D. Das, J. Ngai, N. Yosef et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genom. 19, 477 (2018). https://doi.org/10.1186/s12864-018-4772-0

    Article  CAS  Google Scholar 

  20. S. Jin, C.F. Guerrero-Juarez, L. Zhang, I. Chang, R. Ramos, C.-H. Kuan et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1–20 (2021). https://doi.org/10.1038/s41467-021-21246-9

    Article  CAS  Google Scholar 

  21. Y. Zhou, B. Zhou, L. Pache, M. Chang, A.H. Khodabakhshi, O. Tanaseichuk et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019). https://doi.org/10.1038/s41467-019-09234-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. U. Võsa, A. Claringbould, H.-J. Westra, M.J. Bonder, P. Deelen, B. Zeng et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021). https://doi.org/10.1038/s41588-021-00913-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. D. Oryoji, S. Ueda, K. Yamamoto, J. Yoshimura Noh, K. Okamura, M. Noda et al. Identification of a Hashimoto thyroiditis susceptibility locus via a genome-wide comparison with graves’ disease. J. Clin. Endocrinol. Metab. 100, E319–E324 (2015). https://doi.org/10.1210/jc.2014-3431

    Article  CAS  PubMed  Google Scholar 

  24. N. Ghodsian, E. Abner, C.A. Emdin, É. Gobeil, N. Taba, M.E. Haas et al. Electronic health record-based genome-wide meta-analysis provides insights on the genetic architecture of non-alcoholic fatty liver disease. Cell Rep. Med. 2, 100437 (2021). https://doi.org/10.1016/j.xcrm.2021.100437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. V.W. Skrivankova, R.C. Richmond, B.A.R. Woolf, J. Yarmolinsky, N.M. Davies, S.A. Swanson et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the STROBE-MR statement. JAMA 326, 1614–1621 (2021). https://doi.org/10.1001/jama.2021.18236

    Article  PubMed  Google Scholar 

  26. G. Hemani, J. Zheng, B. Elsworth, K.H. Wade, V. Haberland, D. Baird et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018). https://doi.org/10.7554/eLife.34408

    Article  PubMed  PubMed Central  Google Scholar 

  27. S.L. Au Yeung, S. Luo, C.M. Schooling, The impact of glycated hemoglobin (HbA1c) on cardiovascular disease risk: a mendelian randomization study using UK biobank. Diabetes Care 41, 1991–1997 (2018). https://doi.org/10.2337/dc18-0289

    Article  CAS  PubMed  Google Scholar 

  28. M.-J.A. Brion, K. Shakhbazov, P.M. Visscher, Calculating statistical power in Mendelian randomization studies. Int. J. Epidemiol. 42, 1497–1501 (2013). https://doi.org/10.1093/ije/dyt179

    Article  PubMed  Google Scholar 

  29. F.D. Greco M, C. Minelli, N.A. Sheehan, J.R. Thompson, Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat. Med. 34, 2926–2940 (2015). https://doi.org/10.1002/sim.6522

    Article  MathSciNet  PubMed  Google Scholar 

  30. J. Lin, J. Zhou, Y. Xu, Potential drug targets for multiple sclerosis identified through Mendelian randomization analysis. Brain 146, 3364–3372 (2023). https://doi.org/10.1093/brain/awad070

    Article  PubMed  PubMed Central  Google Scholar 

  31. W.-M. Su, X.-J. Gu, M. Dou, Q.-Q. Duan, Z. Jiang, K.-F. Yin et al. Systematic druggable genome-wide Mendelian randomisation identifies therapeutic targets for Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 94, 954–961 (2023). https://doi.org/10.1136/jnnp-2023-331142

    Article  PubMed  Google Scholar 

  32. C. Giambartolomei, D. Vukcevic, E.E. Schadt, L. Franke, A.D. Hingorani, C. Wallace et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014). https://doi.org/10.1371/journal.pgen.1004383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. B. Liu, M.J. Gloudemans, A.S. Rao, E. Ingelsson, S.B. Montgomery, Abundant associations with gene expression complicate GWAS follow-up. Nat. Genet. 51, 768–769 (2019). https://doi.org/10.1038/s41588-019-0404-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. E.Y. Cao, J.F. Ouyang, O.J.L. Rackham, GeneSwitches: ordering gene expression and functional events in single-cell experiments. Bioinformatics 36, 3273–3275 (2020). https://doi.org/10.1093/bioinformatics/btaa099

    Article  CAS  PubMed  Google Scholar 

  35. Y. Wu, S. Yang, J. Ma, Z. Chen, G. Song, D. Rao et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 12, (2022). https://doi.org/10.1158/2159-8290.CD-21-0316.

  36. L. Sun, Y. Su, A. Jiao, X. Wang, B. Zhang, T cells in health and disease. Sig. Transduct. Target Ther. 8, 1–50 (2023). https://doi.org/10.1038/s41392-023-01471-y

    Article  CAS  Google Scholar 

  37. S. Günther, P. Fagone, G. Jalce, A.G. Atanasov, C. Guignabert, F. Nicoletti, Role of MIF and D-DT in immune-inflammatory, autoimmune, and chronic respiratory diseases: from pathogenic factors to therapeutic targets. Drug Discov. Today 24, 428–439 (2019). https://doi.org/10.1016/j.drudis.2018.11.003

    Article  CAS  PubMed  Google Scholar 

  38. E. Cavalli, R. Ciurleo, M.C. Petralia, P. Fagone, R. Bella, K. Mangano et al. Emerging role of the macrophage migration inhibitory factor family of cytokines in neuroblastoma. pathogenic effectors and novel therapeutic targets? Molecules 25, 1194 (2020). https://doi.org/10.3390/molecules25051194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. A. Osipyan, D. Chen, F.J. Dekker, Epigenetic regulation in macrophage migration inhibitory factor (MIF)-mediated signaling in cancer and inflammation. Drug Discov. Today 26, 1728–1734 (2021). https://doi.org/10.1016/j.drudis.2021.03.012

    Article  CAS  PubMed  Google Scholar 

  40. A.P. Weetman, The immunopathogenesis of chronic autoimmune thyroiditis one century after hashimoto. Eur. Thyroid J. 1, 243–250 (2013). https://doi.org/10.1159/000343834

    Article  PubMed  Google Scholar 

  41. S.M. McLachlan, B. Rapoport, Breaking tolerance to thyroid antigens: changing concepts in thyroid autoimmunity. Endocr. Rev. 35, 59–105 (2014). https://doi.org/10.1210/er.2013-1055

    Article  CAS  PubMed  Google Scholar 

  42. A. Mazzieri, P. Montanucci, G. Basta, R. Calafiore, The role behind the scenes of Tregs and Th17s in Hashimoto’s thyroiditis: toward a pivotal role of FOXP3 and BACH2. Front. Immunol. 13, 1098243 (2022). https://doi.org/10.3389/fimmu.2022.1098243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. F. Marra, F. Tacke, Roles for Chemokines in liver disease. Gastroenterology 147, 577–594.e1 (2014). https://doi.org/10.1053/j.gastro.2014.06.043

    Article  CAS  PubMed  Google Scholar 

  44. W. Liu, M. Li, H. Guo, S. Wei, W. Xu, Y. Yan et al. Single-cell transcriptome analysis of liver immune microenvironment changes induced by microplastics in mice with non-alcoholic fatty liver. Sci. Total Environ. 168308, (2023). https://doi.org/10.1016/j.scitotenv.2023.168308

  45. I. Raphael, R.R. Joern, T.G. Forsthuber, Memory CD4+ T cells in immunity and autoimmune diseases. Cells 9, 531 (2020). https://doi.org/10.3390/cells9030531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. C. Ma, A.H. Kesarwala, T. Eggert, J. Medina-Echeverz, D.E. Kleiner, P. Jin et al. NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis. Nature 531, 253–257 (2016). https://doi.org/10.1038/nature16969

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. R. Gor, N.A. Siddiqui, R. Wijeratne Fernando, A. Sreekantan Nair, J. Illango, M. Malik et al. Unraveling the role of hypothyroidism in non-alcoholic fatty liver disease pathogenesis: correlations, conflicts, and the current stand. Cureus 13, e14858 (2021). https://doi.org/10.7759/cureus.14858

    Article  PubMed  PubMed Central  Google Scholar 

  48. S. Tsukita, Y. Yamazaki, T. Katsuno, A. Tamura, S. Tsukita, Tight junction-based epithelial microenvironment and cell proliferation. Oncogene 27, 6930–6938 (2008). https://doi.org/10.1038/onc.2008.344

    Article  CAS  PubMed  Google Scholar 

  49. T.-J. Fang, C.-H. Lin, Y.-Z. Lin, R.-N. Li, T.-T. Ou, C.-C. Wu et al. F11R mRNA expression and promoter polymorphisms in patients with rheumatoid arthritis. Int. J. Rheum. Dis. 19, 127–133 (2016). https://doi.org/10.1111/1756-185X.12663

    Article  CAS  PubMed  Google Scholar 

  50. H. Miyagawa, M. Yamai, D. Sakaguchi, C. Kiyohara, H. Tsukamoto, Y. Kimoto et al. Association of polymorphisms in complement component C3 gene with susceptibility to systemic lupus erythematosus. Rheumatology 47, 158–164 (2008). https://doi.org/10.1093/rheumatology/kem321

    Article  CAS  PubMed  Google Scholar 

  51. E. Norén, S. Almer, J. Söderman, Genetic variation and expression levels of tight junction genes identifies association between MAGI3 and inflammatory bowel disease. BMC Gastroenterol. 17, 68 (2017). https://doi.org/10.1186/s12876-017-0620-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. D.P.B. McGovern, K.D. Taylor, C. Landers, C. Derkowski, D. Dutridge, M. Dubinsky et al. MAGI2Genetic Variation and Inflammatory Bowel Disease. Inflamm. Bowel Dis. 15, 75–83 (2009). https://doi.org/10.1002/ibd.20611

    Article  PubMed  Google Scholar 

  53. S.A. Rebuffat, M. Kammoun-Krichen, I. Charfeddine, H. Ayadi, N. Bougacha-Elleuch, S. Peraldi-Roux, IL-1β and TSH disturb thyroid epithelium integrity in autoimmune thyroid diseases. Immunobiology 218, 285–291 (2013). https://doi.org/10.1016/j.imbio.2012.05.016

    Article  CAS  PubMed  Google Scholar 

  54. X. Jia, T. Zhai, B. Wang, J. Zhang, F. Zhang, The MAGI2 gene polymorphism rs2160322 is associated with Graves’ disease but not with Hashimoto’s thyroiditis. J. Endocrinol. Investig. 42, 843–850 (2019). https://doi.org/10.1007/s40618-018-0990-1

    Article  CAS  Google Scholar 

  55. S. Keerthivasan, K. Aghajani, M. Dose, L. Molinero, M.W. Khan, V. Venkateswaran et al. β-Catenin promotes colitis and colon cancer through imprinting of proinflammatory properties in T Cells. Sci. Transl. Med. 6, 225ra28–225ra28 (2014). https://doi.org/10.1126/scitranslmed.3007607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. A.-C. Gnirck, M.-S. Philipp, A. Waterhölter, M. Wunderlich, N. Shaikh, V. Adamiak et al. Mucosal-associated invariant T cells contribute to suppression of inflammatory myeloid cells in immune-mediated kidney disease. Nat. Commun. 14, 7372 (2023). https://doi.org/10.1038/s41467-023-43269-0

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  57. M.A. Van Herck, L. Vonghia, W.J. Kwanten, Y. Julé, T. Vanwolleghem, D.G. Ebo et al. Diet reversal and immune modulation show key role for liver and adipose tissue T cells in murine nonalcoholic steatohepatitis. Cell. Mol. Gastroenterol. Hepatol. 10, 467–490 (2020). https://doi.org/10.1016/j.jcmgh.2020.04.010

    Article  PubMed  PubMed Central  Google Scholar 

  58. T. Nitta, H. Kanoh, K. Inamori, A. Suzuki, T. Takahashi, J. Inokuchi, Globo-series glycosphingolipids enhance Toll-like receptor 4-mediated inflammation and play a pathophysiological role in diabetic nephropathy. Glycobiology 29, 260–268 (2019). https://doi.org/10.1093/glycob/cwy105

    Article  CAS  PubMed  Google Scholar 

  59. Y. Xu, G. Jia, T. Li, Z. Zhou, Y. Luo, Y. Chao et al. Molecular insights into biogenesis of glycosylphosphatidylinositol anchor proteins. Nat. Commun. 13, 2617 (2022). https://doi.org/10.1038/s41467-022-30250-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express sincere gratitude to the GEO database, EBI, and NGDC for their generous sharing of data, as well as to all the researchers and volunteers who contributed to the research.

Funding

This study was supported by grants from the National Natural Science Foundation of China (81500374).

Author information

Authors and Affiliations

Authors

Contributions

D.L. designed the study and was a major contributor to writing the manuscript. D.L. and C.C. prepared Figs. 16. Z.Z., C.Z., and Q.G contributed to data analyses for this study. X.P. guided the study. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Xinzhi Peng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Zhang, Z., Zhang, C. et al. Unraveling the connection between Hashimoto’s Thyroiditis and non-alcoholic fatty liver disease: exploring the role of CD4+central memory T cells through integrated genetic approaches. Endocrine (2024). https://doi.org/10.1007/s12020-024-03745-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-024-03745-z

Keywords

Navigation