Skip to main content

Advertisement

Log in

Integrated machine learning and deep learning for predicting diabetic nephropathy model construction, validation, and interpretability

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Objective

To construct a risk prediction model for assisted diagnosis of Diabetic Nephropathy (DN) using machine learning algorithms, and to validate it internally and externally.

Methods

Firstly, the data was cleaned and enhanced, and was divided into training and test sets according to the 7:3 ratio. Then, the metrics related to DN were filtered by difference analysis, Least Absolute Shrinkage and Selection Operator (LASSO), Recursive Feature Elimination (RFE), and Max-relevance and Min-redundancy (MRMR) algorithms. Ten machine learning models were constructed based on the key variables. The best model was filtered by Receiver Operating Characteristic (ROC), Precision-Recall (PR), Accuracy, Matthews Correlation Coefficient (MCC), and Kappa, and was internally and externally validated. Based on the best model, an online platform had been constructed.

Results

15 key variables were selected, and among the 10 machine learning models, the Random Forest model achieved the best predictive performance. In the test set, the area under the ROC curve was 0.912, and in two external validation cohorts, the area under the ROC curve was 0.828 and 0.863, indicating excellent predictive and generalization abilities.

Conclusion

The model has a good predictive value and is expected to help in the early diagnosis and screening of clinical DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data in this article can be found in the following databases: NPHDC, NHANES, and TWBB. An online platform has been created and you can access it through the following link (https://dn-prediction.shinyapps.io/DN-PRED-English).

References

  1. M. Darenskaya, S. Kolesnikov, N. Semenova, L. Kolesnikova. Diabetic nephropathy: significance of determining oxidative stress and opportunities for antioxidant therapies. Int. J. Mol. Sci. 24 (2023). https://doi.org/10.3390/ijms241512378.

  2. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017, A systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018). https://doi.org/10.1016/s0140-6736(18)32279-7

    Article  Google Scholar 

  3. M. Guedes, R. Pecoits-Filho, Can we cure diabetic kidney disease? Present and future perspectives from a nephrologist’s point of view. J. Intern. Med. 291, 165–180 (2022). https://doi.org/10.1111/joim.13424

    Article  PubMed  Google Scholar 

  4. Q. Hu, Y. Chen, X. Deng, Y. Li, X. Ma, J. Zeng, Y. Zhao, Diabetic nephropathy: Focusing on pathological signals, clinical treatment, and dietary regulation. Biomed. Pharmacother. 159, 114252 (2023). https://doi.org/10.1016/j.biopha.2023.114252

    Article  PubMed  Google Scholar 

  5. K. Zhang, Z. Fu, Y. Zhang, X. Chen, G. Cai, Q. Hong, The role of cellular crosstalk in the progression of diabetic nephropathy. Front. Endocrinol. (Lausanne) 14, 1173933 (2023). https://doi.org/10.3389/fendo.2023.1173933

    Article  PubMed  Google Scholar 

  6. M. Vučić Lovrenčić, S. Božičević, L. Smirčić Duvnjak, Diagnostic challenges of diabetic kidney disease. Biochem. Med. (Zagreb) 33, 030501 (2023). https://doi.org/10.11613/bm.2023.030501

    Article  PubMed  Google Scholar 

  7. R.Y. Choi, A.S. Coyner, J. Kalpathy-Cramer, M.F. Chiang, J.P. Campbell, Introduction to machine learning, neural networks, and deep learning. Transl. Vis. Sci. Technol. 9, 14 (2020). https://doi.org/10.1167/tvst.9.2.14

    Article  PubMed  PubMed Central  Google Scholar 

  8. G.S. Handelman, H.K. Kok, R.V. Chandra, A.H. Razavi, M.J. Lee, H. Asadi, eDoctor: Machine learning and the future of medicine. J. Intern Med. 284, 603–619 (2018). https://doi.org/10.1111/joim.12822

    Article  CAS  PubMed  Google Scholar 

  9. R. Gupta, S. Kumari, A. Senapati, R.K. Ambasta, P. Kumar, New era of artificial intelligence and machine learning-based detection, diagnosis, and therapeutics in Parkinson’s disease. Ageing Res. Rev. 90, 102013 (2023). https://doi.org/10.1016/j.arr.2023.102013

    Article  CAS  PubMed  Google Scholar 

  10. Z. Bao, J. Bufton, R.J. Hickman, A. Aspuru-Guzik, P. Bannigan, C. Allen, Revolutionizing drug formulation development: The increasing impact of machine learning. Adv. Drug Deliv. Rev. 202, 115108 (2023). https://doi.org/10.1016/j.addr.2023.115108

    Article  CAS  PubMed  Google Scholar 

  11. J.B. Xue, S. Xia, X.Y. Wang, L.L. Huang, L.Y. Huang, Y.W. Hao, L.J. Zhang, S.Z. Li, Recognizing and monitoring infectious sources of schistosomiasis by developing deep learning models with high-resolution remote sensing images. Infect. Dis. Poverty 12, 6 (2023). https://doi.org/10.1186/s40249-023-01060-9

    Article  PubMed  PubMed Central  Google Scholar 

  12. J.M. Yin, Y. Li, J.T. Xue, G.W. Zong, Z.Z. Fang, L. Zou, Explainable machine learning-based prediction model for diabetic nephropathy. J. Diabetes Res. 2024, 8857453 (2024). https://doi.org/10.1155/2024/8857453

    Article  PubMed  PubMed Central  Google Scholar 

  13. M. Xu, H. Zhou, P. Hu, Y. Pan, S. Wang, L. Liu, X. Liu, Identification and validation of immune and oxidative stress-related diagnostic markers for diabetic nephropathy by WGCNA and machine learning. Front. Immunol. 14, 1084531 (2023). https://doi.org/10.3389/fimmu.2023.1084531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. X.Z. Liu, M. Duan, H.D. Huang, Y. Zhang, T.Y. Xiang, W.C. Niu, B. Zhou, H.L. Wang, T.T. Zhang, Predicting diabetic kidney disease for type 2 diabetes mellitus by machine learning in the real world: A multicenter retrospective study. Front Endocrinol. (Lausanne) 14, 1184190 (2023). https://doi.org/10.3389/fendo.2023.1184190

    Article  PubMed  Google Scholar 

  15. S.M. Hosseini Sarkhosh, M. Hemmatabadi, A. Esteghamati, Development and validation of a risk score for diabetic kidney disease prediction in type 2 diabetes patients: a machine learning approach. J. Endocrinol. Invest 46, 415–423 (2023). https://doi.org/10.1007/s40618-022-01919-y

    Article  CAS  PubMed  Google Scholar 

  16. L. Zhao, H. Ren, J. Zhang, Y. Cao, Y. Wang, D. Meng, Y. Wu, R. Zhang, Y. Zou, H. Xu et al. Diabetic retinopathy, classified using the lesion-aware deep learning system, predicts diabetic end-stage renal disease in Chinese patients. Endocr. Pract. 26, 429–443 (2020). https://doi.org/10.4158/ep-2019-0512

    Article  PubMed  Google Scholar 

  17. C.T. Fan, J.C. Lin, C.H. Lee, Taiwan Biobank: a project aiming to aid Taiwan’s transition into a biomedical island. Pharmacogenomics 9, 235–246 (2008). https://doi.org/10.2217/14622416.9.2.235

    Article  PubMed  Google Scholar 

  18. S.v. Buuren. Flexible Imputation of Missing Data, 2nd edn. (Boca Raton, FL, 2018)

  19. Z. Xu, D. Shen, Y. Kou, T. Nie. A synthetic minority oversampling technique based on Gaussian mixture model filtering for imbalanced data classification. IEEE Trans Neural Netw Learn Syst (2022). https://doi.org/10.1109/tnnls.2022.3197156

  20. L. McInnes, J. Healy, J. Melville. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 2018,

  21. J. Chen, X. Zhang, D-MANOVA: fast distance-based multivariate analysis of variance for large-scale microbiome association studies. Bioinformatics 38, 286–288 (2021). https://doi.org/10.1093/bioinformatics/btab498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. J.K. Tay, B. Narasimhan, T. Hastie. Elastic net regularization paths for all generalized linear models. J. Stat. Softw. 106 (2023). https://doi.org/10.18637/jss.v106.i01

  23. Y. Han, L. Huang, F. Zhou, A dynamic recursive feature elimination framework (dRFE) to further refine a set of OMIC biomarkers. Bioinformatics 37, 2183–2189 (2021). https://doi.org/10.1093/bioinformatics/btab055

    Article  CAS  PubMed  Google Scholar 

  24. H. Peng, F. Long, C. Ding, Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226–1238 (2005). https://doi.org/10.1109/tpami.2005.159

    Article  PubMed  Google Scholar 

  25. L. Breiman, Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  26. T. Chen, C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining pp. 785–794 (2016)

  27. E. Alfaro, M. Gáamez, N. García. adabag: An R package for classification with boosting and bagging. J. Stat. Softw. 2013, 54, https://doi.org/10.18637/jss.v054.i02

  28. L. Prokhorenkova, G. Gusev, A. Vorobev, A.V. Dorogush, A. Gulin. CatBoost: unbiased boosting with categorical features. Adv. Neural Inform. Process. Syst. 31 (2018). https://doi.org/10.48550/arXiv.1706.09516

  29. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu. LightGBM: a highly efficient gradient boosting decision tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, 2017; pp. 3149–3157

  30. M. Abadi, P. Barham, J. Chen, Z. Chen, X. Zhang. TensorFlow: A system for large-scale machine learning. USENIX Association 2016, 265–283, https://doi.org/10.48550/arXiv.1605.08695

  31. T.A. Dejenie, E.C. Abebe, M.A. Mengstie, M.A. Seid, N.A. Gebeyehu, G.A. Adella, G.A. Kassie, A.Y. Gebrekidan, M.M. Gesese, K.D. Tegegne et al. Dyslipidemia and serum cystatin C levels as biomarker of diabetic nephropathy in patients with type 2 diabetes mellitus. Front Endocrinol. (Lausanne) 14, 1124367 (2023). https://doi.org/10.3389/fendo.2023.1124367

    Article  PubMed  PubMed Central  Google Scholar 

  32. A.K. Clift, D. Dodwell, S. Lord, S. Petrou, M. Brady, G.S. Collins, J. Hippisley-Cox, Development and internal-external validation of statistical and machine learning models for breast cancer prognostication: cohort study. Bmj 381, e073800 (2023). https://doi.org/10.1136/bmj-2022-073800

    Article  PubMed  PubMed Central  Google Scholar 

  33. V. Subbiah, The next generation of evidence-based medicine. Nat. Med 29, 49–58 (2023). https://doi.org/10.1038/s41591-022-02160-z

    Article  CAS  PubMed  Google Scholar 

  34. R.D. Joshi, C.K. Dhakal. Predicting type 2 diabetes using logistic regression and machine learning approaches. Int. J. Environ. Res. Public Health 18 (2021). https://doi.org/10.3390/ijerph18147346

  35. A. Zanchi, A.W. Jehle, F. Lamine, B. Vogt, C. Czerlau, S. Bilz, H. Seeger, S. de Seigneux, Diabetic kidney disease in type 2 diabetes: a consensus statement from the Swiss Societies of Diabetes and Nephrology. Swiss Med Wkly 153, 40004 (2023). https://doi.org/10.57187/smw.2023.40004

    Article  PubMed  Google Scholar 

  36. B.F. Palmer, Change in albuminuria as a surrogate endpoint for cardiovascular and renal outcomes in patients with diabetes. Diabetes Obes. Metab. 25, 1434–1443 (2023). https://doi.org/10.1111/dom.15030

    Article  PubMed  Google Scholar 

  37. X. Ren, N. Kang, X. Yu, X. Li, Y. Tang, J. Wu, Prevalence and association of diabetic nephropathy in newly diagnosed Chinese patients with diabetes in the Hebei province: A single-center case-control study. Medicine (Baltimore) 102, e32911 (2023). https://doi.org/10.1097/md.0000000000032911

    Article  CAS  PubMed  Google Scholar 

  38. S. Chen, L. Chen, H. Jiang, Prognosis and risk factors of chronic kidney disease progression in patients with diabetic kidney disease and non-diabetic kidney disease: a prospective cohort CKD-ROUTE study. Ren. Fail 44, 1309–1318 (2022). https://doi.org/10.1080/0886022x.2022.2106872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. K. Azushima, J.P. Kovalik, T. Yamaji, J. Ching, T.W. Chng, J. Guo, J.J. Liu, M. Nguyen, R.B. Sakban, S.E. George, et al. Abnormal lactate metabolism is linked to albuminuria and kidney injury in diabetic nephropathy. Kidney Int. (2023). https://doi.org/10.1016/j.kint.2023.08.006

  40. J.G. Greener, S.M. Kandathil, L. Moffat, D.T. Jones, A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23, 40–55 (2022). https://doi.org/10.1038/s41580-021-00407-0

    Article  CAS  PubMed  Google Scholar 

  41. M. Garofolo, V. Napoli, D. Lucchesi, S. Accogli, M.L. Mazzeo, P. Rossi, E. Neri, S. Del Prato, G. Penno, Type 2 diabetes albuminuric and non-albuminuric phenotypes have different morphological and functional ultrasound features of diabetic kidney disease. Diabetes Metab. Res Rev. 39, e3585 (2023). https://doi.org/10.1002/dmrr.3585

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Population Health Data Center of China, the National Health and Nutrition Examination Survey of the United States, and Taiwan Biobank for providing data support.

Funding

This study was supported by the College Students’ Innovative Entrepreneurial Training Plan Program (202310367071).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Data collection and analysis were performed by J.J.M. The first draft of the manuscript was written by J.J.M., S.G.A., and M.H.C. The revision of the manuscript was completed by L.Z. and J.L. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jin Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., An, S., Cao, M. et al. Integrated machine learning and deep learning for predicting diabetic nephropathy model construction, validation, and interpretability. Endocrine (2024). https://doi.org/10.1007/s12020-024-03735-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-024-03735-1

Keywords

Navigation