Skip to main content
Log in

A comparison of the usage of an open-source automated insulin delivery system and the MiniMed™ 780 G system in children and adolescents with type 1 diabetes in real-world settings: the AWeSoMe study group

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

In recent years there has been a noticeable increase in the use of advanced hybrid closed-loop systems (AHCLs) for managing type 1 diabetes (T1D) among youth. However, there is a lack of comparison between the open-source automated insulin delivery (AID) system and the MiniMed™ 780 G system (780 G).

Methods

In this multi-center study, we retrospectively compared selected glycemic ranges of 26 individuals who used open-source AID and 20 individuals who used 780 G (age 11.3 years [IQR 9.3, 12.9] and 13.4 years [IQR 10.9, 16.5], respectively, p = 0.069) from system initiation to the most recent visit.

Results

At baseline, the median HbA1c was significantly lower and the time below range (TBR)<54mg/dL was significantly higher in the open-source AID group compared to the 780 G group (6.8% [IQR 6.4, 7.1] vs. 7.4% [IQR 6.9, 8.6], p = 0.006 and (1.0% [IQR 0.5, 2.8] vs. 0.0% [0.0, 1.0], p = 0.014), respectively; the median time in range (TIR70–180mg/dL) was similar (p = 0.068). After a median duration of 10.9 months on AHCLs the reduction of HbA1c was similar ( ~ 0.3%). The time spent in the hypoglycemic ranges was longer among users of the open-source AID compared to 780 G (TBR54–70mg/dL 4.2% [IQR 2.6, 7.3] vs. 2.0% [1.0, 4.0], p = 0.005) and TBR<54mg/dL 1.1% [IQR 0.4, 2.3] vs. 0.0 [0.0, 1.0], p = 0.001).

Conclusions

Both AHCLs similarly improved HbA1c and TIR70–180mg/dL. The open-source AID youth had better glycemic control but spent longer time in the hypoglycemic range. These findings must be considered when choosing the use of AHCL technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. R.A. Lal, L. Ekhlaspour, K. Hood, B. Buckingham, Realizing a closed-loop (Artificial Pancreas) system for the treatment of Type 1 diabetes. Endocr. Rev. 40, 1521–1546 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  2. K. Braune, R.A. Lal, L. Petruželková, G. Scheiner, P. Winterdijk, S. Schmidt, L. Raimond, K.K. Hood, M.C. Riddell, T.C. Skinner, K. Raile, S. Hussain, Open-source automated insulin delivery: international consensus statement and practical guidance for health-care professionals. Lancet Diabetes Endocrinol. 10, 58–74 (2022)

    Article  PubMed  Google Scholar 

  3. J.L. Sherr, L. Heinemann, G.A. Fleming, R.M. Bergenstal, D. Bruttomesso, H. Hanaire, R.W. Holl, J.R. Petrie, A.L. Peters, M. Evans, Automated insulin delivery: benefits, challenges, and recommendations. A consensus report of the joint diabetes technology working group of the european association for the study of diabetes and the American Diabetes Association. Diabetologia 66, 3–22 (2023)

    Article  PubMed  Google Scholar 

  4. L. Petruzelkova, P. Jiranova, J. Soupal, M. Kozak, L. Plachy, V. Neuman, S. Pruhova, B. Obermannova, S. Kolouskova, Z. Sumnik, Pre-school and school-aged children benefit from the switch from a sensor-augmented pump to an AndroidAPS hybrid closed loop: A retrospective analysis. Pediatr. Diabetes 22, 594–604 (2021)

    Article  PubMed  CAS  Google Scholar 

  5. M.J. Burnside, D.M. Lewis, H.R. Crocket, R.A. Meier, J.A. Williman, O.J. Sanders, C.A. Jefferies, A.M. Faherty, R.G. Paul, C.S. Lever, S.K.J. Price, C.M. Frewen, S.D. Jones, T.C. Gunn, C. Lampey, B.J. Wheeler, M.I. de Bock, Open-source automated insulin delivery in Type 1 diabetes. N. Engl. J. Med. 387, 869–881 (2022). https://doi.org/10.1056/NEJMoa2203913

    Article  PubMed  CAS  Google Scholar 

  6. J. Da Silva, G. Lepore, T. Battelino, A. Arrieta, J. Castañeda, B. Grossman, J. Shin, O. Cohen, Real-world performance of the MiniMed™ 780G system: first report of outcomes from 4120 users. Diabetes Technol. Ther. 24, 113–119 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  7. M. Bassi, M. Teliti, M. Lezzi, A. Iosca, M.F. Strati, L. Carmisciano, G. d’Annunzio, N. Minuto, D. Maggi, A Comparison of Two Hybrid Closed-Loop Systems in Italian Children and Adults With Type 1 Diabetes. Front Endocrinol. (Lausanne) 12, 802419 (2022)

    Article  PubMed  Google Scholar 

  8. Characterization and Classification of Statistical Areas Within Municipalities and Local Councils by the Socio-Economic Level of the Population 2015. 2019

  9. T. Battelino, T. Danne, R.M. Bergenstal, S.A. Amiel, R. Beck, T. Biester, E. Bosi, B.A. Buckingham, W.T. Cefalu, K.L. Close, C. Cobelli, E. Dassau, J.H. DeVries, K.C. Donaghue, K. Dovc, F.J. Doyle, S. Garg, G. Grunberger, S. Heller, L. Heinemann, I.B. Hirsch, R. Hovorka, W. Jia, O. Kordonouri, B. Kovatchev, A. Kowalski, L. Laffel, B. Levine, A. Mayorov, C. Mathieu, H.R. Murphy, R. Nimri, K. Nørgaard, C.G. Parkin, E. Renard, D. Rodbard, B. Saboo, D. Schatz, K. Stoner, T. Urakami, S.A. Weinzimer, M. Phillip, Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care 42, 1593–1603 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  10. R.M. Bergenstal, R.W. Beck, K.L. Close, G. Grunberger, D.B. Sacks, A. Kowalski, A.S. Brown, L. Heinemann, G. Aleppo, D.B. Ryan, T.D. Riddlesworth, W.T. Cefalu, Glucose management indicator (GMI): a new term for estimating a1c from continuous glucose monitoring. Diabetes Care 41, 2275–2280 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  11. K. Braune, S. O’Donnell, B. Cleal, D. Lewis, A. Tappe, I. Willaing, B. Hauck, K. Raile, Real-world use of do-it-yourself artificial pancreas systems in children and adolescents With Type 1 diabetes: online survey and analysis of self-reported clinical outcomes. JMIR Mhealth Uhealth 7, 14087 (2019)

    Article  Google Scholar 

  12. K. Braune, K.A. Gajewska, A. Thieffry, D.M. Lewis, T. Froment, S. O’Donnell, J. Speight, C. Hendrieckx, J. Schipp, T. Skinner, H. Langstrup, A. Tappe, K. Raile, and B. Cleal, Why #WeAreNotWaiting-Motivations and Self-Reported Outcomes Among Users of Open-source Automated Insulin Delivery Systems: Multinational Survey. J Med Internet Res 23, https://doi.org/10.2196/25409 (2021)

  13. A. Arrieta, T. Battelino, A.E. Scaramuzza, J. Da Silva, J. Castañeda, T.L. Cordero, J. Shin, O. Cohen, Comparison of MiniMed 780G system performance in users aged younger and older than 15 years: evidence from 12 870 real-world users. Diabetes Obes. Metab. 24, 1370–1379 (2022)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. K. Dovc, T. Battelino, Time in range centered diabetes care. Clin. Pediatr. Endocrinol. 30, 1–10 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  15. T. Urakami, Severe hypoglycemia: is it still a threat for children and adolescents with Type 1 diabetes? Front Endocrinol. (Lausanne) 11, 609 (2020)

    Article  PubMed  Google Scholar 

  16. L. Zhang, L. Yang, Z. Zhou, Data-based modeling for hypoglycemia prediction: Importance, trends, and implications for clinical practice. Front Public Health 11, (2023)

Download references

Acknowledgements

The authors thank Esther Eshkol for editorial assistance.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Z.L., Y.L., M.R., O.P.H.; Curation of data: Z.L., Y.L., K.M.A., A.B., N.L., T.J.P., T.B.A., S.A., A.H., J.N., M.R., O.P.H.; Analysis of data: Z.L., O.P.H.; drafting the article: Z.L., Y.L., O.P.H.; revising it critically: Z.L., Y.L., K.M.A., A.B., N.L., T.J.P., T.B.A., S.A., A.H., J.N., M.R., O.P.H.; final approval of the version to be submitted: Z.L., Y.L., K.M.A., A.B., N.L., T.J.P., T.B.A., S.A., A.H., J.N., M.R., O.P.H.

Corresponding authors

Correspondence to Zohar Landau or Yael Lebenthal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

The research adheres to the principles outlined in the Declaration of Helsinki. The study received ethical approval from the local Helsinki committees of each participating medical center. Informed consent was waived for this retrospective investigation.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landau, Z., Lebenthal, Y., Mazor-Aronovitch, K. et al. A comparison of the usage of an open-source automated insulin delivery system and the MiniMed™ 780 G system in children and adolescents with type 1 diabetes in real-world settings: the AWeSoMe study group. Endocrine (2024). https://doi.org/10.1007/s12020-024-03683-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-024-03683-w

Keywords

Navigation