Skip to main content

Advertisement

Log in

Correlation of subclinical hypothyroidism with sarcopenia and its components in the Chinese older adults

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Objective

To identify the correlation of thyroid function and subclinical hypothyroidism (SCH) with sarcopenia and its components in the older Chinese adults.

Methods

Older adults were recruited and divided into SCH group and non-SCH group. Free triiodothyronine (FT3), free thyroxine (FT4) and thyroid-stimulating hormone (TSH) were measured by electrochemiluminescence. Appendicular skeletal muscle mass (ASM) was measured, and skeletal muscle index (SMI) was further calculated. Grip strength was measured. Physical performance was graded by the Short Physical Performance Battery (SPPB) scores of the gait speed test, chair stand test and balance test.

Results

Of the 240 older adults included, 48 (20.00%) presented with SCH. The prevalence of sarcopenia in SCH group was higher than that in non-SCH group (33.33% v.s. 18.75%). Grip strength was significantly lower in patients with SCH than those without sarcopenia. In terms of physical performance, 6-meter gait speed and SPPB score were lower in subjects with SCH than those without SCH, while 5 sit-to-stand movements was longer score in subjects with SCH than those without SCH. SCH was significantly correlated with sarcopenia, while FT3, FT4, and TSH levels were not. SCH was significantly correlated with low muscle strength and low muscle mass, but not with low physical performance. FT3 level was positively correlated with grip strength and SMI. TSH level was negatively correlated with grip strength, 6-meter gait speed, and SPPB score, but positively correlated with the time of 5 sit-to-stand movements.

Conclusion

SCH is a risk factor for sarcopenia in the older adults and correlated with low muscle strength and low muscle mass, but not with low physical performance. FT3, FT4 and TSH levels are associated with sarcopenia components, but not with sarcopenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated and analyzed in the present study are available from the corresponding author upon reasonable request.

References

  1. A.J. Cruz-Jentoft, G. Bahat, J. Bauer, Y. Boirie, O. Bruyere, T. Cederholm, C. Cooper, F. Landi, Y. Rolland, A.A. Sayer et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1), 16–31 (2019)

    Article  PubMed  Google Scholar 

  2. A.J. Cruz-Jentoft, A.A. Sayer, Sarcopenia. Lancet 393(10191), 2636–2646 (2019)

    Article  PubMed  Google Scholar 

  3. A. Kitamura, S. Seino, T. Abe, Y. Nofuji, Y. Yokoyama, H. Amano, M. Nishi, Y. Taniguchi, M. Narita, Y. Fujiwara et al. Sarcopenia: prevalence, associated factors, and the risk of mortality and disability in Japanese older adults. J. Cachexia Sarcopenia Muscle 12(1), 30–38 (2021)

    Article  PubMed  Google Scholar 

  4. L. Larsson, H. Degens, M. Li, L. Salviati, Y.I. Lee, W. Thompson, J.L. Kirkland, M. Sandri, Sarcopenia: aging-related loss of muscle mass and function. Physiol. Rev. 99(1), 427–511 (2019)

    Article  PubMed  Google Scholar 

  5. P. Wiedmer, T. Jung, J.P. Castro, L.C.D. Pomatto, P.Y. Sun, K.J.A. Davies, T. Grune, Sarcopenia—molecular mechanisms and open questions. Ageing Res. Rev. 65, 101200 (2021)

    Article  CAS  PubMed  Google Scholar 

  6. J.E. Morley, Hormones and sarcopenia. Curr. Pharm. Des. 23(30), 4484–4492 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. F.F. Bloise, T.S. Oliveira, A. Cordeiro, T.M. Ortiga-Carvalho, Thyroid hormones play role in sarcopenia and myopathies. Front Physiol. 9, 560 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  8. C. Szlejf, C.K. Suemoto, C. Janovsky, S.M. Barreto, M. Diniz, P.A. Lotufo, I.M. Bensenor, Thyroid function and sarcopenia: results from the ELSA-Brasil study. J. Am. Geriatr. Soc. 68(7), 1545–1553 (2020)

    Article  PubMed  Google Scholar 

  9. Y. Sheng, D. Ma, Q. Zhou, L. Wang, M. Sun, S. Wang, H. Qi, J. Liu, G. Ding, Y. Duan, Association of thyroid function with sarcopenia in elderly Chinese euthyroid subjects. Aging Clin. Exp. Res. 31(8), 1113–1120 (2019)

    Article  PubMed  Google Scholar 

  10. S.H. Pearce, G. Brabant, L.H. Duntas, F. Monzani, R.P. Peeters, S. Razvi, J.L. Wemeau, 2013 ETA guideline: management of subclinical hypothyroidism. Eur. Thyroid J. 2(4), 215–228 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. G.J. Canaris, N.R. Manowitz, G. Mayor, E.C. Ridgway, The Colorado thyroid disease prevalence study. Arch. Intern Med 160(4), 526–534 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. A. Garmendia Madariaga, S. Santos Palacios, F. Guillen-Grima, J.C. Galofre, The incidence and prevalence of thyroid dysfunction in Europe: a meta-analysis. J. Clin. Endocrinol. Metab. 99(3), 923–931 (2014)

    Article  PubMed  Google Scholar 

  13. Y. Li, D. Teng, J. Ba, B. Chen, J. Du, L. He, X. Lai, X. Teng, X. Shi, Y. Li et al. Efficacy and safety of long-term universal salt iodization on thyroid disorders: epidemiological evidence from 31 provinces of mainland China. Thyroid 30(4), 568–579 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. V.S. Reuters, F. Teixeira Pde, P.S. Vigario, C.P. Almeida, A. Buescu, M.M. Ferreira, C.L. de Castro, J. Gold, M. Vaisman, Functional capacity and muscular abnormalities in subclinical hypothyroidism. Am. J. Med. Sci. 338(4), 259–263 (2009)

    Article  PubMed  Google Scholar 

  15. M.K. Moon, Y.J. Lee, S.H. Choi, S. Lim, E.J. Yang, J.Y. Lim, N.J. Paik, K.W. Kim, K.S. Park, H.C. Jang et al. Subclinical hypothyroidism has little influences on muscle mass or strength in elderly people. J. Korean Med. Sci. 25(8), 1176–1181 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  16. W. Ni, M. Zhang, X. Wang, X. Li, Q. Wang, Y. Wang, G. Chen, T. Shen, K. Fan, X. Yao et al. Age-specific serum thyrotropin reference range for the diagnosis of subclinical hypothyroidism and its association with lipid profiles in the elderly population. Sci. Rep. 12(1), 20872 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. L.K. Chen, J. Woo, P. Assantachai, T.W. Auyeung, M.Y. Chou, K. Iijima, H.C. Jang, L. Kang, M. Kim, S. Kim et al. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 21(3), 300–307 e302 (2020)

    Article  PubMed  Google Scholar 

  18. J. Jonklaas, A.C. Bianco, A.J. Bauer, K.D. Burman, A.R. Cappola, F.S. Celi, D.S. Cooper, B.W. Kim, R.P. Peeters, M.S. Rosenthal et al. Guidelines for the treatment of hypothyroidism: prepared by the american thyroid association task force on thyroid hormone replacement. Thyroid 24(12), 1670–1751 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  19. V.S. Virgini, N. Rodondi, P.M. Cawthon, S.L. Harrison, A.R. Hoffman, E.S. Orwoll, K.E. Ensrud, D.C. Bauer, Osteoporotic fractures in men Mr OSRG: subclinical thyroid dysfunction and frailty among older men. J. Clin. Endocrinol. Metab. 100(12), 4524–4532 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. Netzer, P. Chocano-Bedoya, M. Feller, C. Janett-Pellegri, L. Wildisen, A.E. Buchi, E. Moutzouri, E.G. Rodriguez, T.H. Collet, R.K.E. Poortvliet et al. The effect of thyroid hormone therapy on muscle function, strength and mass in older adults with subclinical hypothyroidism-an ancillary study within two randomized placebo controlled trials. Age Ageing 52(1), afac326 (2023).

    Article  PubMed  Google Scholar 

  21. G. Ceresini, M. Marina, F. Lauretani, M. Maggio, M.F. Serra, T. Meschi, S. Bandinelli, G.P. Ceda, L. Ferrucci, Physical performance across the thyroid function values within the normal range in adult and older persons. Aging Clin. Exp. Res. 31(3), 385–391 (2019)

    Article  PubMed  Google Scholar 

  22. Y. Gu, G. Meng, H. Wu, Q. Zhang, L. Liu, X. Bao, Y. Wang, S. Zhang, S. Sun, X. Wang et al. Thyroid function as a predictor of handgrip strength among middle-aged and older euthyroid adults: the TCLSIH cohort study. J. Am. Med. Dir. Assoc. 20(10), 1236–1241 (2019)

    Article  PubMed  Google Scholar 

  23. F.F. Bloise, A. Cordeiro, T.M. Ortiga-Carvalho, Role of thyroid hormone in skeletal muscle physiology. J. Endocrinol. 236(1), R57–R68 (2018)

    Article  PubMed  Google Scholar 

  24. C. Franceschi, R. Ostan, S. Mariotti, D. Monti, G. Vitale, The aging thyroid: a reappraisal within the geroscience integrated perspective. Endocr. Rev. 40(5), 1250–1270 (2019)

    PubMed  Google Scholar 

  25. D. Spira, N. Buchmann, I. Demuth, E. Steinhagen-Thiessen, H. Volzke, T. Ittermann, Association of thyroid function with handgrip strength: data from the study of health in pomerania and the berlin aging study II. Thyroid 29(9), 1220–1226 (2019)

    Article  PubMed  Google Scholar 

  26. B.J. Kim, S.H. Lee, C.M. Isales, M.W. Hamrick, M.K. Kwak, J.M. Koh, Association of serum TSH with handgrip strength in community-dwelling euthyroid elderly. J. Clin. Endocrinol. Metab. 103(11), 3986–3992 (2018)

    Article  PubMed  Google Scholar 

  27. C. Lopez-Otin, M.A. Blasco, L. Partridge, M. Serrano, G. Kroemer, Hallmarks of aging: an expanding universe. Cell 186(2), 243–278 (2023)

    Article  CAS  PubMed  Google Scholar 

  28. L. Chaker, A.R. Cappola, S.P. Mooijaart, R.P. Peeters, Clinical aspects of thyroid function during ageing. Lancet Diabetes Endocrinol. 6(9), 733–742 (2018)

    Article  PubMed  Google Scholar 

  29. D. Salvatore, W.S. Simonides, M. Dentice, A.M. Zavacki, P.R. Larsen, Thyroid hormones and skeletal muscle-new insights and potential implications. Nat. Rev. Endocrinol. 10(4), 206–214 (2014)

    Article  CAS  PubMed  Google Scholar 

  30. R. Mullur, Y.Y. Liu, G.A. Brent, Thyroid hormone regulation of metabolism. Physiol. Rev. 94(2), 355–382 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. C. Carmody, A.N. Ogawa-Wong, C. Martin, C. Luongo, M. Zuidwijk, B. Sager, T. Petersen, A. Roginski Guetter, R. Janssen, E.Y. Wu et al. A global loss of Dio2 leads to unexpected changes in function and fiber types of slow skeletal muscle in male mice. Endocrinology 160(5), 1205–1222 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  32. D. Zhang, X. Wang, Y. Li, L. Zhao, M. Lu, X. Yao, H. Xia, Y.C. Wang, M.F. Liu, J. Jiang et al. Thyroid hormone regulates muscle fiber type conversion via miR-133a1. J. Cell Biol. 207(6), 753–766 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. A. Lombardi, M. Moreno, P. de Lange, S. Iossa, R.A. Busiello, F. Goglia, Regulation of skeletal muscle mitochondrial activity by thyroid hormones: focus on the “old” triiodothyronine and the “emerging” 3,5-diiodothyronine. Front Physiol. 6, 237 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  34. R. Lesmana, R.A. Sinha, B.K. Singh, J. Zhou, K. Ohba, Y. Wu, W.W. Yau, B.H. Bay, P.M. Yen, Thyroid hormone stimulation of autophagy is essential for mitochondrial biogenesis and activity in skeletal muscle. Endocrinology 157(1), 23–38 (2016)

    Article  CAS  PubMed  Google Scholar 

  35. R. Ambrosio, M.A. De Stefano, D. Di Girolamo, D. Salvatore, Thyroid hormone signaling and deiodinase actions in muscle stem/progenitor cells. Mol. Cell Endocrinol. 459, 79–83 (2017)

    Article  CAS  PubMed  Google Scholar 

  36. M.Z.I. Chowdhury, T.C. Turin, Variable selection strategies and its importance in clinical prediction modelling. Fam. Med. Community Health 8(1), e000262 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (82205050); Medical Scientific Research Foundation of Jiangsu Province of China (Surface project) (M2020102); Jiangsu Provincial Key Research and Development Program (BE2020726); Thyroid Research Project of Young and Middle-Aged Doctors of China International Medical Exchange Foundation (BQE-JZX-202115); Suqian Key Research and Development Program (S202017, S202110); Geriatric Health Scientific Research Project of Jiangsu Province (LK2021059).

Author information

Authors and Affiliations

Authors

Contributions

X.H. and S.X. were responsible for the overall design and manuscript drafting; X.H., L.Z., Y.W., and S.X. were responsible for performing experiments; X.H., L.Z., M.Z., W.M., Y.S., H.Z., C.l., and S.X. were responsible for data collection; X.H. and L.Z. were responsible for statistical analysis and manuscript drafting

Corresponding authors

Correspondence to Yan Wang or Shuhang Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Zhang, L., Zhang, M. et al. Correlation of subclinical hypothyroidism with sarcopenia and its components in the Chinese older adults. Endocrine (2023). https://doi.org/10.1007/s12020-023-03654-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-023-03654-7

Keywords

Navigation