Skip to main content
Log in

Machine learning prediction models for diabetic kidney disease: systematic review and meta-analysis

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

Machine learning is increasingly recognized as a viable approach for identifying risk factors associated with diabetic kidney disease (DKD). However, the current state of real-world research lacks a comprehensive systematic analysis of the predictive performance of machine learning (ML) models for DKD.

Objectives

The objectives of this study were to systematically summarize the predictive capabilities of various ML methods in forecasting the onset and the advancement of DKD, and to provide a basic outline for ML methods in DKD.

Methods

We have searched mainstream databases, including PubMed, Web of Science, Embase, and MEDLINE databases to obtain the eligible studies. Subsequently, we categorized various ML techniques and analyzed the differences in their performance in predicting DKD.

Results

Logistic regression (LR) was the prevailing ML method, yielding an overall pooled area under the receiver operating characteristic curve (AUROC) of 0.83. On the other hand, the non-LR models also performed well with an overall pooled AUROC of 0.80. Our t-tests showed no statistically significant difference in predicting ability between LR and non-LR models (t = 1.6767, p > 0.05).

Conclusion

All ML predicting models yielded relatively satisfied DKD predicting ability with their AUROCs greater than 0.7. However, we found no evidence that non-LR models outperformed the LR model. LR exhibits high performance or accuracy in practice, while it is known for algorithmic simplicity and computational efficiency compared to others. Thus, LR may be considered a cost-effective ML model in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Area under the receiver operating characteristic curve:

AUROC

Biological age:

BA

Body mass index:

BMI

Chronological age:

CA

Concordance index:

C-index

Creatinine:

Cr

Diabetic kidney disease:

DKD

Estimated Glomerular Filtration Rate:

eGFR

False negatives:

FN

False positives:

FP

Kidney Age Index:

KAI

Logistic regression:

LR

Low-Density Lipoprotein Cholesterol:

LDL-C

Machine learning:

ML

Prediction Model Risk of Bias Assessment Tool:

PROBAST

Synthetic Minority Over-sampling Technique:

SMOTE

Summary ROC:

SROC

Systolic blood pressure:

SBP

Transparent Reporting of a Multivariate Predictive Models for Individual Prognosis or Diagnosis:

TRIPOD

True negatives:

TN

True positives:

TP

True negative rate:

TNR

True positive rate:

TPR

Urine Albumin Creatinine Ratio:

UACR

References

  1. M.C. Thomas, M. Brownlee, K. Susztak et al. Diabetic kidney disease. Nat. Rev. Dis. Prim. 1, 15018 (2015)

    Article  PubMed  Google Scholar 

  2. R.C. Slieker, A.A.W.A. Van Der Heijden, M.K. Siddiqui et al. Performance of prediction models for nephropathy in people with type 2 diabetes: systematic review and external validation study. BMJ (Clin. Res. ed.) 374, n2134 (2021)

    Google Scholar 

  3. L. Winter, L.A. Wong, G. Jerums et al. Use of readily accessible inflammatory markers to predict diabetic kidney disease. Front Endocrinol. 9, 225 (2018)

    Article  Google Scholar 

  4. Fernandes J, Bissaro L, Santos F, et al. Deep learning in risk assessment. An. XVI Encontro Nac. Intel. Artif. Comput. (2019). https://doi.org/10.5753/eniac.2019.9358

  5. X. Song, X. Liu, F. Liu et al. Comparison of machine learning and logistic regression models in predicting acute kidney injury: a systematic review and meta-analysis. Int. J. Med. Inform. 151, 104484 (2021)

    Article  PubMed  Google Scholar 

  6. Z. Zhang, L. Yang, W. Han et al. Machine learning prediction models for gestational diabetes mellitus: meta-analysis. J. Med. Internet Res. 24(3), e26634 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  7. R.A.M. Guidotti, Anna, Ruggieri, Salvatore, Turini et al. A survey of methods for explaining black box models. ACM Comput. Surv. 51, 0360–0300 (2018)

    Google Scholar 

  8. D. Ahmedt-Aristizabal, M.A. Armin, S. Denman et al. Graph-based deep learning for medical diagnosis and analysis: past, present and future. Sensors 21, 14 (2021)

    Article  Google Scholar 

  9. E. Christodoulou, J. Ma, G.S. Collins et al. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J. Clin. Epidemiol. 110, 12–22 (2019)

    Article  PubMed  Google Scholar 

  10. Y.-H. Pua, H. Kang, J. Thumboo et al. Machine learning methods are comparable to logistic regression techniques in predicting severe walking limitation following total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 28(10), 3207–16 (2020)

    Article  PubMed  Google Scholar 

  11. W.A. Van Eeden, C. Luo, A.M. Van Hemert et al. Predicting the 9-year course of mood and anxiety disorders with automated machine learning: a comparison between auto-sklearn, naïve Bayes classifier, and traditional logistic regression [J]. Psychiatry Res. 299, 113823 (2021)

    Article  PubMed  Google Scholar 

  12. G.H. Li, C.L. Cheung, K.C. Tan et al. Development and validation of sex-specific hip fracture prediction models using electronic health records: a retrospective, population-based cohort study. EClinicalMedicine 58, 101876 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  13. M.D.F. Mcinnes, D. Moher, B.D. Thombs et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA 319(4), 388–96 (2018)

    Article  PubMed  Google Scholar 

  14. L.M. Fleuren, T.L.T. Klausch, C.L. Zwager et al. Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy. Intensive Care Med. 46(3), 383–400 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  15. G.S. Collins, J.B. Reitsma, D.G. Altman et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ (Clin. Res. ed.) 350, g7594 (2015)

    Google Scholar 

  16. K.G.M. Moons, J.A.H. De Groot, W. Bouwmeester et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med. 11(10), e1001744 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  17. K.G.M. Moons, R.F. Wolff, R.D. Riley et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration [J]. Ann. Intern. Med. 170(1), W1–W33 (2019)

    Article  PubMed  Google Scholar 

  18. C. Krittanawong, H.U.H. Virk, S. Bangalore et al. Machine learning prediction in cardiovascular diseases: a meta-analysis [J]. Sci. Rep. 10(1), 16057 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Y. Zou, L. Zhao, J. Zhang et al. Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease [J]. Ren. Fail. 44(1), 562–70 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. Allen, Z. Iqbal, A. Green-Saxena et al. Prediction of diabetic kidney disease with machine learning algorithms, upon the initial diagnosis of type 2 diabetes mellitus [J]. BMJ open diabetes Res. care 10(1), e002560 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  21. S. Belur Nagaraj, M.J. Pena, W. Ju et al. Machine-learning-based early prediction of end-stage renal disease in patients with diabetic kidney disease using clinical trials data [J]. Diabetes, Obes. Metab. 22(12), 2479–86 (2020)

    Article  CAS  PubMed  Google Scholar 

  22. B.H. Cho, H. Yu, K.-W. Kim et al. Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods [J]. Artif. Intell. Med. 42(1), 37–53 (2008)

    Article  PubMed  Google Scholar 

  23. Z. Dong, Q. Wang, Y. Ke et al. Prediction of 3-year risk of diabetic kidney disease using machine learning based on electronic medical records [J]. J. Transl. Med. 20(1), 143 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Y.-M. Gao, S.-T. Feng, Y. Yang et al. Development and External Validation of a Nomogram and a Risk Table for Prediction of Type 2 Diabetic Kidney Disease Progression Based on a Retrospective Cohort Study in China [J]. Diabetes, Metab. Syndr. Obes.: Targets Ther. 15, 799–811 (2022)

    Article  CAS  Google Scholar 

  25. S. Jiang, J. Fang, T. Yu et al. Novel Model Predicts Diabetic Nephropathy in Type 2 Diabetes [J]. Am. J. Nephrol. 51(2), 130–8 (2020)

    Article  PubMed  Google Scholar 

  26. S. Low, S.C. Lim, X. Zhang et al. Development and validation of a predictive model for Chronic Kidney Disease progression in Type 2 Diabetes Mellitus based on a 13-year study in Singapore [J]. Diabetes Res. Clin. Pract. 123, 49–54 (2017)

    Article  PubMed  Google Scholar 

  27. M. Makino, R. Yoshimoto, M. Ono et al. Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning [J]. Sci. Rep. 9(1), 11862 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  28. V. Rodriguez-Romero, R.F. Bergstrom, B.S. Decker et al. Prediction of Nephropathy in Type 2 Diabetes: An Analysis of the ACCORD Trial Applying Machine Learning Techniques [J]. Clin. Transl. Sci. 12(5), 519–28 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. X. Song, L.R. Waitman, Y. Hu et al. Robust clinical marker identification for diabetic kidney disease with ensemble feature selection [J]. J. Am. Med. Inform. Assoc.: JAMIA 26(3), 242–53 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  30. L. Sun, J. Shang, J. Xiao et al. Development and validation of a predictive model for end-stage renal disease risk in patients with diabetic nephropathy confirmed by renal biopsy [J]. PeerJ 8, e8499 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  31. H. Tong, D. Wang, M. Fang, Correlation between Glucose/C-Peptide Ratio and the Risk of Disease Progression in Diabetic Nephropathy Patients: A Clinical Retrospective Analysis [J]. J. Healthc. Eng. 2022, 7406764 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  32. C. Xi, C. Wang, G. Rong et al. A Nomogram Model that Predicts the Risk of Diabetic Nephropathy in Type 2 Diabetes Mellitus Patients: A Retrospective Study [J]. Int. J. Endocrinol. 2021, 6672444 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  33. D. Hui, F. Zhang, Y. Lu et al. A Multifactorial Risk Score System for the Prediction of Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus [J]. Diabetes, Metab. Syndr. Obes.: Targets Ther. 16, 385–95 (2023)

    Article  CAS  Google Scholar 

  34. L. Chan, G.N. Nadkarni, F. Fleming et al. Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict progression of diabetic kidney disease [J]. Diabetologia 64(7), 1504–15 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S.M. Hosseini Sarkhosh, M. Hemmatabadi, A. Esteghamati, Development and validation of a risk score for diabetic kidney disease prediction in type 2 diabetes patients: a machine learning approach [J]. J. Endocrinological Investig. 46(2), 415–23 (2023)

    Article  CAS  Google Scholar 

  36. W. Jiang, J. Wang, X. Shen et al. Establishment and Validation of a Risk Prediction Model for Early Diabetic Kidney Disease Based on a Systematic Review and Meta-Analysis of 20 Cohorts [J]. Diabetes Care 43(4), 925–33 (2020)

    Article  CAS  PubMed  Google Scholar 

  37. S.M. Hosseini Sarkhosh, A. Esteghamati, M. Hemmatabadi et al. Predicting diabetic nephropathy in type 2 diabetic patients using machine learning algorithms [J]. J. Diabetes Metab. Disord. 21(2), 1433–41 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. L. Sun, Y. Wu, R.-X. Hua et al. Prediction models for risk of diabetic kidney disease in Chinese patients with type 2 diabetes mellitus [J]. Ren. Fail. 44(1), 1454–61 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  39. C. Sabanayagam, F. He, S. Nusinovici et al. Prediction of diabetic kidney disease risk using machine learning models: A population-based cohort study of Asian adults [J]. eLife 12, e81878 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  40. S.-M. Ou, M.-T. Tsai, K.-H. Lee et al. Prediction of the risk of developing end-stage renal diseases in newly diagnosed type 2 diabetes mellitus using artificial intelligence algorithms [J]. BioData Min. 16(1), 8 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  41. Y. Cheng, J. Shang, D. Liu et al. Development and validation of a predictive model for the progression of diabetic kidney disease to kidney failure [J]. Ren. Fail. 42(1), 550–9 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. R.D. Riley, J. Ensor, K.I.E. Snell et al. Calculating the sample size required for developing a clinical prediction model [J]. BMJ (Clin. Res. ed.) 368, m441 (2020)

    Google Scholar 

  43. L. Wang, Y. Wang, Q. Chang, Feature selection methods for big data bioinformatics: A survey from the search perspective [J]. Methods 111, 21–31 (2016)

    Article  CAS  PubMed  Google Scholar 

  44. T. Wang, A. Bezerianos, A. Cichocki et al. Multikernel Capsule Network for Schizophrenia Identification [J]. IEEE Trans. Cybern. 52(6), 4741–50 (2022)

    Article  PubMed  Google Scholar 

  45. S. Nusinovici, Y.C. Tham, M.Y. Chak Yan et al. Logistic regression was as good as machine learning for predicting major chronic diseases [J]. J. Clin. Epidemiol. 122, 56–69 (2020)

    Article  PubMed  Google Scholar 

  46. S.P. Silveiro, R. Friedman, M.J. De Azevedo et al. Five-year prospective study of glomerular filtration rate and albumin excretion rate in normofiltering and hyperfiltering normoalbuminuric NIDDM patients [J]. Diabetes Care 19(2), 171–4 (1996)

    Article  CAS  PubMed  Google Scholar 

  47. H.J. Thomson, E.I. Ekinci, N.J. Radcliffe et al. Elevated baseline glomerular filtration rate (GFR) is independently associated with a more rapid decline in renal function of patients with type 1 diabetes. J. Diabetes Complications 30(2), 256–61 (2016)

    Article  PubMed  Google Scholar 

  48. A. Ceriello, F. Prattichizzo, Variability of risk factors and diabetes complications. Cardiovasc. Diabetol. 20(1), 101 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. L. Tonneijck, M.H.A. Muskiet, M.M. Smits et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J. Am. Soc. Nephrol. 28(4), 1023–39 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. M.C. Thomas, R.C. Atkins, Blood pressure lowering for the prevention and treatment of diabetic kidney disease. Drugs 66(17), 2213–34 (2006)

    Article  CAS  PubMed  Google Scholar 

  51. C.L. Andaur Navarro, J.A.A. Damen, T. Takada et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. BMJ (Clin. Res. ed.) 375, n2281 (2021)

    Google Scholar 

  52. C.L. Andaur Navarro, J.A.A. Damen, T. Takada et al. Completeness of reporting of clinical prediction models developed using supervised machine learning: a systematic review. BMC Med. Res. Methodol. 22(1), 12 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the staff and participants of the study for their indispensable contributions.

Funding

This study was funded by Tianjin Science and Technology Major Special Project and Engineering Public Health Science and Technology Major Special Project (No.21ZXGWSY00100), Tianjin Natural Science Foundation Key Projects (No.22JCZDJC00590), Tianjin Key Medical Discipline (Specialty) Construct Project (No.TJYXZDXK-032A), Scientific Research Funding of Tianjin Medical University Chu Hsien-I Memorial Hospital (No.ZXY-ZDSYSZD-1), China Endocrine Metabolism Talent Research Fund (No. 2022-N-02-07). The funder was not for profit.

Author information

Authors and Affiliations

Authors

Contributions

L.C. and X.S. contributed equally to this study. L.C. and X.S. acquired the data, prepared the Figs, and wrote the manuscript; P.Y. designed this study and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pei Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to publish

Written informed consent for publication was obtained from all participants. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. The meta-analysis was registered on PROSPERO (reference number CRD 42022357770).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Shao, X. & Yu, P. Machine learning prediction models for diabetic kidney disease: systematic review and meta-analysis. Endocrine (2023). https://doi.org/10.1007/s12020-023-03637-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-023-03637-8

Keywords

Navigation