Skip to main content
Log in

Gene polymorphisms and thyroid hormone signaling: implication for the treatment of hypothyroidism

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Introduction

Mutations and single nucleotide polymorphisms (SNPs) in the genes encoding the network of proteins involved in thyroid hormone signaling (TH) may have implications for the effectiveness of the treatment of hypothyroidism with LT4. It is conceivable that loss-of-function mutations or SNPs impair the ability of LT4 to be activated to T3, reach its targets, and ultimately resolve symptoms of hypothyroidism. Some of these patients do benefit from therapy containing LT4 and LT3.

Methods

Here, we reviewed the PubMed and examined gene mutations and SNPs in the TH cellular transporters, deiodinases, and TH receptors, along with their impact on TH signaling, and potential clinical implications.

Results

In some mechanisms, such as the Thr92Ala-DIO2 SNP, there is a compelling rationale for reduced T4 to T3 activation that limits the effectiveness of LT4 to restore euthyroidism. In other mechanisms, a potential case can be made but more studies with a larger number of individuals are needed.

Discussion/Conclusion

Understanding the clinical impact of the genetic makeup of LT4-treated patients may help in the preemptive identification of those individuals that would benefit from therapy containing LT3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Jonklaas, A.C. Bianco, A.J. Bauer, K.D. Burman, A.R. Cappola, F.S. Celi et al. Guidelines for the treatment of hypothyroidism: prepared by the american thyroid association task force on thyroid hormone replacement. Thyroid 24(12), 1670–751 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  2. P. Saravanan, W.F. Chau, N. Roberts, K. Vedhara, R. Greenwood, C.M. Dayan, Psychological well-being in patients on ‘adequate’ doses of l-thyroxine: results of a large, controlled community-based questionnaire study. Clin. Endocrinol. 57(5), 577–85 (2002)

    Article  CAS  Google Scholar 

  3. E.M. Wekking, B.C. Appelhof, E. Fliers, A.H. Schene, J. Huyser, J.G. Tijssen et al. Cognitive functioning and well-being in euthyroid patients on thyroxine replacement therapy for primary hypothyroidism. Eur. J. Endocrinol. 153(6), 747–53 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. M.H. Samuels, K.G. Schuff, N.E. Carlson, P. Carello, J.S. Janowsky, Health status, psychological symptoms, mood, and cognition in L-thyroxine-treated hypothyroid subjects. Thyroid. 17(3), 249–58 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. D. Mentuccia, M.J. Thomas, G. Coppotelli, L. Reinhart, B.D. Mitchell, A.R. Shuldiner et al. The Endocrine Society’s 86th Annual Meeting. New Orleans, LA, USA; 2004:P3-382.

  6. V. Panicker, P. Saravanan, B. Vaidya, J. Evans, A.T. Hattersley, T.M. Frayling et al. Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine therapy in hypothyroid patients. J. Clin. Endocrinol. Metab. 94(5), 1623–9 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. A.C. Bianco, A. Dumitrescu, B. Gereben, M.O. Ribeiro, T.L. Fonseca, G.W. Fernandes et al. Paradigms of dynamic control of thyroid hormone signaling. Endocr. Rev. 40(4), 1000–1047 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. M. Baqui, D. Botero, B. Gereben, C. Curcio, J.W. Harney, D. Salvatore et al. Human type 3 iodothyronine selenodeiodinase is located in the plasma membrane and undergoes rapid internalization to endosomes. J. Biol. Chem. 278(2), 1206–11 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. M.M. Baqui, B. Gereben, J.W. Harney, P.R. Larsen, A.C. Bianco, Distinct subcellular localization of transiently expressed types 1 and 2 iodothyronine deiodinases as determined by immunofluorescence confocal microscopy. Endocrinology 141(11), 4309–12 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. M.C. Medina, T.L. Fonesca, J. Molina, A. Fachado, M. Castillo, L. Dong et al. Maternal inheritance of an inactive type III deiodinase gene allele affects mouse pancreatic beta-cells and disrupts glucose homeostasis. Endocrinology 155(8), 3160–71 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  11. M.C. Medina, J. Molina, Y. Gadea, A. Fachado, M. Murillo, G. Simovic et al. The thyroid hormone-inactivating type III deiodinase is expressed in mouse and human beta-cells and its targeted inactivation impairs insulin secretion. Endocrinology 152(10), 3717–27 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. W.S. Simonides, M.A. Mulcahey, E.M. Redout, A. Muller, M.J. Zuidwijk, T.J. Visser et al. Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J. Clin. Investig. 118(3), 975–83 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. K. Abe, J. Li, Y.Y. Liu, G.A. Brent, Thyroid hormone-mediated histone modification protects cortical neurons from the toxic effects of hypoxic injury. J. Endocr. Soc. 6(11), bvac139 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  14. P. Gil-Ibáñez, M.M. Belinchón, B. Morte, M.J. Obregón, J. Bernal, Is the intrinsic genomic activity of thyroxine relevant in vivo? effects on gene expression in primary cerebrocortical and neuroblastoma cells. Thyroid 27(8), 1092–8 (2017)

    Article  PubMed  Google Scholar 

  15. G.S. Hones, H. Rakov, J. Logan, X.H. Liao, E. Werbenko, A.S. Pollard et al. Noncanonical thyroid hormone signaling mediates cardiometabolic effects in vivo. Proc. Natl Acad. Sci. USA 114(52), E11323–E32 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  16. A.C. Bianco, B.S. Kim, Pathophysiological relevance of deiodinase polymorphism. Curr. Opin. Endocrinol. Diabetes Obes. 25(5), 341–346 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M.N. Mullis, T. Matsui, R. Schell, R. Foree, I.M. Ehrenreich, The complex underpinnings of genetic background effects. Nat. Commun. 9(1), 3548 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  18. C.H. Chandler, S. Chari, A. Kowalski, L. Choi, D. Tack, M. DeNieu et al. How well do you know your mutation? Complex effects of genetic background on expressivity, complementation, and ordering of allelic effects. PLoS Genet 13(11), e1007075 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  19. J. Lachance, S.A. Tishkoff, SNP ascertainment bias in population genetic analyses: why it is important, and how to correct it. Bioessays 35(9), 780–6 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. E.A. McAninch, A.C. Bianco, New insights into the variable effectiveness of levothyroxine monotherapy for hypothyroidism. Lancet Diabetes Endocrinol. 3(10), 756–8 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  21. B. Gereben, E.A. McAninch, M.O. Ribeiro, A.C. Bianco, Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat. Rev. Endocrinol. 11(11), 642–52 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. D. Gullo, A. Latina, F. Frasca, R. Le Moli, G. Pellegriti, R. Vigneri, Levothyroxine monotherapy cannot guarantee euthyroidism in all athyreotic patients. PloS one 6(8), e22552 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M.G. Castagna, M. Dentice, S. Cantara, R. Ambrosio, F. Maino, T. Porcelli et al. DIO2 Thr92Ala Reduces Deiodinase-2 Activity and Serum-T3 Levels in Thyroid-Deficient Patients. J. Clin. Endocrinol. Metab. 102(5), 1623–30 (2017)

    Article  PubMed  Google Scholar 

  24. M.D. Ettleson, W.H. Prieto, P.S.T. Russo, J. de Sa, W. Wan, N. Laiteerapong et al. Serum thyrotropin and triiodothyronine levels in levothyroxine-treated patients. J. Clin. Endocrinol. Metab. 108(6), e258–e266 (2022).

    Article  Google Scholar 

  25. M.D. Ettleson, A.C. Bianco, Individualized therapy for hypothyroidism: is T4 enough for everyone? J. Clin. Endocrinol. Metab. 105, 9 (2020)

    Article  Google Scholar 

  26. J. Bernal, A. Guadaño-Ferraz, B. Morte, Thyroid hormone transporters–functions and clinical implications. Nat. Rev. Endocrinol. 11(7), 406–17 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. F. Salas-Lucia, A.C. Bianco, T3 levels and thyroid hormone signaling. Front. Endocrinol. 13, 1044691 (2022).

    Article  Google Scholar 

  28. W.M. van der Deure, R.P. Peeters, T.J. Visser, Genetic variation in thyroid hormone transporters. Best. Pr. Res Clin. Endocrinol. Metab. 21(2), 339–50 (2007)

    Article  Google Scholar 

  29. G. Hennemann, R. Docter, E.C. Friesema, M. de Jong, E.P. Krenning, T.J. Visser, Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr. Rev. 22(4), 451–76 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. A. Teumer, L. Chaker, S. Groeneweg, Y. Li, C. Di Munno, C. Barbieri et al. Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation. Nat. Commun. 9(1), 4455 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  31. G.L. Roef, E.R. Rietzschel, T. De Meyer, S. Bekaert, M.L. De Buyzere, C. Van daele et al. Associations between single nucleotide polymorphisms in thyroid hormone transporter genes (MCT8, MCT10 and OATP1C1) and circulating thyroid hormones. Clin. Chim. Acta 425, 227–32 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. W.M. van der Deure, R.P. Peeters, T.J. Visser, Molecular aspects of thyroid hormone transporters, including MCT8, MCT10, and OATPs, and the effects of genetic variation in these transporters. J. Mol. Endocrinol. 44(1), 1–11 (2010)

    Article  PubMed  Google Scholar 

  33. J.C. Uter, U.M. Krämer, L. Schöls, A. Rodriguez-Fornells, A. Göbel, M. Heldmann et al. Correction: Single nucleotide polymorphisms in thyroid hormone transporter genes MCT8, MCT10 and deiodinase DIO2 contribute to inter-individual variance of executive functions and personality traits. Exp. Clin. Endocrinol. Diabetes. 128(9), e2 (2020).

    Article  PubMed  Google Scholar 

  34. F. Fei, X. Guo, Y. Chen, X. Liu, J. Tu, J. Xing et al. Polymorphisms of monocarboxylate transporter genes are associated with clinical outcomes in patients with colorectal cancer. J. Cancer Res Clin. Oncol. 141(6), 1095–102 (2015)

    Article  CAS  PubMed  Google Scholar 

  35. A.P. Halestrap, The monocarboxylate transporter family–Structure and functional characterization. IUBMB Life 64(1), 1–9 (2012)

    Article  CAS  PubMed  Google Scholar 

  36. A.M. Dumitrescu, X.H. Liao, T.B. Best, K. Brockmann, S. Refetoff, A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am. J. Hum. Genet 74(1), 168–75 (2004)

    Article  CAS  PubMed  Google Scholar 

  37. E.C. Friesema, A. Grueters, H. Biebermann, H. Krude, A. von Moers, M. Reeser et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 364(9443), 1435–7 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. A.M. Dumitrescu, S. Refetoff, The syndromes of reduced sensitivity to thyroid hormone. Biochimica et. biophysica acta 1830(7), 3987–4003 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. G. Kleinau, U. Schweizer, A. Kinne, J. Köhrle, A. Grüters, H. Krude et al. Insights into molecular properties of the human monocarboxylate transporter 8 by combining functional with structural information. Thyroid Res. 4(Suppl 1), S4 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  40. C.E. Schwartz, M.M. May, N.J. Carpenter, R.C. Rogers, J. Martin, M.G. Bialer et al. Allan-Herndon-Dudley syndrome and the monocarboxylate transporter 8 (MCT8) gene. Am. J. Hum. Genet 77(1), 41–53 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. J. Jansen, E.C. Friesema, M.H. Kester, C.E. Schwartz, T.J. Visser, Genotype-phenotype relationship in patients with mutations in thyroid hormone transporter MCT8. Endocrinology 149(5), 2184–90 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. E.C. Friesema, J. Jansen, J.W. Jachtenberg, W.E. Visser, M.H. Kester, T.J. Visser, Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol. Endocrinol. 22(6), 1357–69 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. M. Nishimura, S. Naito, Tissue-specific mRNA expression profiles of human solute carrier transporter superfamilies. Drug Metab. Pharmacokinet. 23(1), 22–44 (2008)

    Article  CAS  PubMed  Google Scholar 

  44. S. Groeneweg, F.S. van Geest, R.P. Peeters, H. Heuer, W.E. Visser, Thyroid hormone transporters. Endocr. Rev. 41, 2 (2020)

    Article  Google Scholar 

  45. M. Medici, W.M. van der Deure, M. Verbiest, S.H. Vermeulen, P.S. Hansen, L.A. Kiemeney et al. A large-scale association analysis of 68 thyroid hormone pathway genes with serum TSH and FT4 levels. Eur. J. Endocrinol. 164(5), 781–8 (2011)

    Article  CAS  PubMed  Google Scholar 

  46. B. Hagenbuch, P.J. Meier, The superfamily of organic anion transporting polypeptides. Biochimica et. biophysica acta 1609(1), 1–18 (2003)

    Article  CAS  PubMed  Google Scholar 

  47. W.E. Visser, E.C. Friesema, T.J. Visser, Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol. Endocrinol. 25(1), 1–14 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. L.M. Roberts, K. Woodford, M. Zhou, D.S. Black, J.E. Haggerty, E.H. Tate et al. Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood-brain barrier. Endocrinology 149(12), 6251–61 (2008)

    Article  CAS  PubMed  Google Scholar 

  49. P. Strømme, S. Groeneweg, E.C. Lima de Souza, C. Zevenbergen, A. Torgersbråten, A. Holmgren et al. Mutated thyroid hormone transporter OATP1C1 associates with severe brain hypometabolism and juvenile neurodegeneration. Thyroid 28(11), 1406–15 (2018)

    Article  PubMed  Google Scholar 

  50. W.M. van der Deure, B.C. Appelhof, R.P. Peeters, W.M. Wiersinga, E.M. Wekking, J. Huyser et al. Polymorphisms in the brain-specific thyroid hormone transporter OATP1C1 are associated with fatigue and depression in hypothyroid patients. Clin. Endocrinol. 69(5), 804–11 (2008)

    Article  Google Scholar 

  51. J. Brozaitiene, D. Skiriute, J. Burkauskas, A. Podlipskyte, E. Jankauskiene, A. Serretti et al. Deiodinases, organic anion transporter polypeptide polymorphisms, and thyroid hormones in patients with myocardial infarction. Genet Test. Mol. Biomark. 22(4), 270–8 (2018)

    Article  CAS  Google Scholar 

  52. S. Taroza, D. Rastenytė, J. Burkauskas, A. Podlipskytė, N. Kažukauskienė, V. Patamsytė et al. Deiodinases, organic anion transporter polypeptide polymorphisms and symptoms of anxiety and depression after ischemic stroke. J. Stroke Cerebrovasc. Dis. 29(9), 105040 (2020)

    Article  PubMed  Google Scholar 

  53. S. Taroza, D. Rastenytė, A. Podlipskytė, V. Patamsytė, N. Mickuvienė, Deiodinases, organic anion transporter polypeptide polymorphisms and ischemic stroke outcomes. J. Neurol. Sci. 407, 116457 (2019)

    Article  CAS  PubMed  Google Scholar 

  54. G.A. Kullak-Ublick, B. Hagenbuch, B. Stieger, C.D. Schteingart, A.F. Hofmann, A.W. Wolkoff et al. Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver. Gastroenterology 109(4), 1274–82 (1995)

    Article  CAS  PubMed  Google Scholar 

  55. B. Gao, B. Hagenbuch, G.A. Kullak-Ublick, D. Benke, A. Aguzzi, P.J. Meier, Organic anion-transporting polypeptides mediate transport of opioid peptides across blood-brain barrier. J. Pharm. Exp. Ther. 294(1), 73–9 (2000)

    CAS  Google Scholar 

  56. R.P. Peeters, H. van Toor, W. Klootwijk, Y.B. de Rijke, G.G. Kuiper, A.G. Uitterlinden et al. Polymorphisms in thyroid hormone pathway genes are associated with plasma TSH and iodothyronine levels in healthy subjects. J. Clin. Endocrinol. Metab. 88(6), 2880–8 (2003)

    Article  CAS  PubMed  Google Scholar 

  57. M.M. Breteler, Vascular involvement in cognitive decline and dementia. Epidemiologic evidence from the Rotterdam Study and the Rotterdam Scan Study. Ann. N. Y. Acad. Sci. 903, 457–65 (2000)

    Article  CAS  PubMed  Google Scholar 

  58. I. Badagnani, R.A. Castro, T.R. Taylor, C.M. Brett, C.C. Huang, D. Stryke et al. Interaction of methotrexate with organic-anion transporting polypeptide 1A2 and its genetic variants. J. Pharm. Exp. Ther. 318(2), 521–9 (2006)

    Article  CAS  Google Scholar 

  59. W. Lee, H. Glaeser, L.H. Smith, R.L. Roberts, G.W. Moeckel, G. Gervasini et al. Polymorphisms in human organic anion-transporting polypeptide 1A2 (OATP1A2): implications for altered drug disposition and central nervous system drug entry. J. Biol. Chem. 280(10), 9610–7 (2005)

    Article  CAS  PubMed  Google Scholar 

  60. T. Abe, M. Kakyo, T. Tokui, R. Nakagomi, T. Nishio, D. Nakai et al. Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J. Biol. Chem. 274(24), 17159–63 (1999)

    Article  CAS  PubMed  Google Scholar 

  61. T. Abe, M. Unno, T. Onogawa, T. Tokui, T.N. Kondo, R. Nakagomi et al. LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology 120(7), 1689–99 (2001)

    Article  CAS  PubMed  Google Scholar 

  62. W.M. van der Deure, E.C. Friesema, F.J. de Jong, Y.B. de Rijke, F.H. de Jong, A.G. Uitterlinden et al. Organic anion transporter 1B1: an important factor in hepatic thyroid hormone and estrogen transport and metabolism. Endocrinology 149(9), 4695–701 (2008)

    Article  PubMed  Google Scholar 

  63. F. Zhou, J. Zheng, L. Zhu, A. Jodal, P.H. Cui, M. Wong et al. Functional analysis of novel polymorphisms in the human SLCO1A2 gene that encodes the transporter OATP1A2. Aaps J. 15(4), 1099–108 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. E. Comasco, R. Vumma, S. Toffoletto, J. Johansson, L. Flyckt, T. Lewander et al. Genetic and functional study of l-type amino acid transporter 1 in Schizophrenia. Neuropsychobiology 74(2), 96–103 (2016)

    Article  CAS  PubMed  Google Scholar 

  65. M.A. Christoffolete, R. Arrojo e Drigo, F. Gazoni, S.M. Tente, V. Goncalves, B.S. Amorim et al. Mice with impaired extrathyroidal thyroxine to 3,5,3’-triiodothyronine conversion maintain normal serum 3,5,3’-triiodothyronine concentrations. Endocrinology 148(3), 954–60 (2007)

    Article  CAS  PubMed  Google Scholar 

  66. V.A. Galton, M. Schneider, A.S. Clark, D.L. Germain, Life without T4 to T3 conversion: studies in mice devoid of the 5’-deiodinases. Endocrinology 150(6), 2957–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. V.A. Galton, P.R. Larsen, M.J. Berry, The deiodinases: Their identification and cloning of their genes. Endocrinology 162, 3 (2021)

    Article  Google Scholar 

  68. A.M. Dumitrescu, X.H. Liao, M.S. Abdullah, J. Lado-Abeal, F.A. Majed, L.C. Moeller et al. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat. Genet. 37(11), 1247–52 (2005)

    Article  CAS  PubMed  Google Scholar 

  69. C. Di Cosmo, N. McLellan, X.H. Liao, K.K. Khanna, R.E. Weiss, L. Papp et al. Clinical and molecular characterization of a novel selenocysteine insertion sequence-binding protein 2 (SBP2) gene mutation (R128X). J. Clin. Endocrinol. Metab. 94(10), 4003–9 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  70. M.F. Azevedo, G.B. Barra, L.A. Naves, L.F. Ribeiro Velasco, P. Godoy Garcia Castro, L.C. de Castro et al. Selenoprotein-related disease in a young girl caused by nonsense mutations in the SBP2 gene. J. Clin. Endocrinol. Metab. 95(8), 4066–71 (2010)

    Article  CAS  PubMed  Google Scholar 

  71. E. Schoenmakers, M. Agostini, C. Mitchell, N. Schoenmakers, L. Papp, O. Rajanayagam et al. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J. Clin. Investig. 120(12), 4220–35 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. T. Hamajima, Y. Mushimoto, H. Kobayashi, Y. Saito, K. Onigata, Novel compound heterozygous mutations in the SBP2 gene: characteristic clinical manifestations and the implications of GH and triiodothyronine in longitudinal bone growth and maturation. Eur. J. Endocrinol. 166(4), 757–64 (2012)

    Article  CAS  PubMed  Google Scholar 

  73. G. Çatli, H. Fujisawa, Ö. Kirbiyik, M.S. Mimoto, P. Gençpinar, T.R. Özdemir et al. A novel homozygous selenocysteine insertion sequence binding protein 2 (SECISBP2, SBP2) Gene Mutation in a Turkish Boy. Thyroid 28(9), 1221–3 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  74. R.M. Paragliola, A. Corsello, P. Concolino, F. Ianni, G. Papi, A. Pontecorvi et al. Iodothyronine deiodinases and reduced sensitivity to thyroid hormones. Front Biosci. (Landmark Ed.) 25(2), 201–28 (2020)

    Article  CAS  PubMed  Google Scholar 

  75. M.M. Franca, A. German, G.W. Fernandes, X.H. Liao, A.C. Bianco, S. Refetoff et al. Human type 1 iodothyronine deiodinase (DIO1) mutations cause abnormal thyroid hormone metabolism. Thyroid 31(2), 202–7 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. V. Panicker, C. Cluett, B. Shields, A. Murray, K.S. Parnell, J.R. Perry et al. A common variation in deiodinase 1 gene DIO1 is associated with the relative levels of free thyroxine and triiodothyronine. J. Clin. Endocrinol. Metab. 93(8), 3075–81 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. N. Kazukauskiene, D. Skiriute, O. Gustiene, J. Burkauskas, V. Zaliunaite, N. Mickuviene et al. Importance of thyroid hormone level and genetic variations in deiodinases for patients after acute myocardial infarction: a longitudinal observational study. Sci. Rep. 10(1), 9169 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Y. Young Cho, H. Jeong Kim, H. Won Jang, T. Hyuk Kim, C.S. Ki, S. Wook Kim et al. The relationship of 19 functional polymorphisms in iodothyronine deiodinase and psychological well-being in hypothyroid patients. Endocrine 57(1), 115–24 (2017)

    Article  PubMed  Google Scholar 

  79. R.A. Philibert, S.R. Beach, T.D. Gunter, A.A. Todorov, G.H. Brody, M. Vijayendran et al. The relationship of deiodinase 1 genotype and thyroid function to lifetime history of major depression in three independent populations. Am. J. Med. Genet. Part B, Neuropsychiatr. Genet 156b(5), 593–9 (2011)

    Article  Google Scholar 

  80. E. Gałecka, M. Talarowska, M. Maes, K.P. Su, P. Górski, J. Szemraj, Polymorphisms of iodothyronine deiodinases (DIO1, DIO3) genes are not associated with recurrent depressive disorder. Pharm. Rep. 68(5), 913–7 (2016)

    Article  Google Scholar 

  81. R. Cooper-Kazaz, W.M. van der Deure, M. Medici, T.J. Visser, A. Alkelai, B. Glaser et al. Preliminary evidence that a functional polymorphism in type 1 deiodinase is associated with enhanced potentiation of the antidepressant effect of sertraline by triiodothyronine. J. Affect Disord. 116(1-2), 113–6 (2009)

    Article  CAS  PubMed  Google Scholar 

  82. D.L. Geffner, M. Azukizawa, J.M. Hershman, Propylthiouracil blocks extrathyroidal conversion of thyroxine to triiodothyronine and augments thyrotropin secretion in man. J. Clin. Investig. 55, 224–9 (1975)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. D. Mentuccia, M.J. Thomas, G. Coppotelli, L.J. Reinhart, B.D. Mitchell, A.R. Shuldiner et al. The Thr92Ala deiodinase type 2 (DIO2) variant is not associated with type 2 diabetes or indices of insulin resistance in the old order of Amish. Thyroid 15(11), 1223–7 (2005)

    Article  PubMed  Google Scholar 

  84. E.A. McAninch, S. Jo, N.Z. Preite, E. Farkas, P. Mohacsik, C. Fekete et al. Prevalent polymorphism in thyroid hormone-activating enzyme leaves a genetic fingerprint that underlies associated clinical syndromes. J. Clin. Endocrinol. Metab. 100(3), 920–33 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. S. Jo, T.L. Fonseca, B. Bocco, G.W. Fernandes, E.A. McAninch, A.P. Bolin et al. Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain. J. Clin. Investig. 129(1), 230–45 (2019)

    Article  PubMed  Google Scholar 

  86. E.A. McAninch, K.B. Rajan, D.A. Evans, S. Jo, L. Chaker, R.P. Peeters et al. A common DIO2 Polymorphism and Alzheimer Disease Dementia in African and European Americans. J. Clin. Endocrinol. Metab. 103(5), 1818–26 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  87. F.B. Lorena, J.M. Sato, B.M. Coviello, A.J.T. Arnold, A. Batistuzzo, L.M. Yamanouchi et al. Age worsens the cognitive phenotype in mice carrying the Thr92Ala-DIO2 polymorphism. Metabolites 12, 7 (2022)

    Article  Google Scholar 

  88. H.J. Wouters, H.C. van Loon, M.M. van der Klauw, M.F. Elderson, S.N. Slagter, A.M. Kobold et al. No effect of the Thr92Ala polymorphism of deiodinase-2 on thyroid hormone parameters, health-related quality of life, and cognitive functioning in a large population-based cohort study. Thyroid 27(2), 147–55 (2017)

    Article  CAS  PubMed  Google Scholar 

  89. M.K.M. Shakir, D.I. Brooks, E.A. McAninch, T.L. Fonseca, V.Q. Mai, A.C. Bianco et al. Comparative effectiveness of levothyroxine, desiccated thyroid extract, and levothyroxine+Liothyronine in hypothyroidism. J. Clin. Endocrinol. Metab. 106(11), e4400–e4413 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  90. A. Carle, J. Faber, R. Steffensen, P. Laurberg, B. Nygaard, Hypothyroid patients encoding combined MCT10 and DIO2 gene polymorphisms may prefer L-T3 + L-T4 combination treatment - data using a blind, randomized, clinical study. Eur. Thyroid J. 6(3), 143–51 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. D. Salvatore, T. Porcelli, M.D. Ettleson, A.C. Bianco, The relevance of T(3) in the management of hypothyroidism. Lancet Diabetes Endocrinol. 10(5), 366–72 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. P. Taylor, E. Haug, A. Heald, L. Premawardhana, O. Okosieme, M. Stedman et al. Society for Endocrinology BES 2022. Harrogate, UK; 2022.

  93. M.E. Martinez, D.F. Cox, B.P. Youth, A. Hernandez, Genomic imprinting of DIO3, a candidate gene for the syndrome associated with human uniparental disomy of chromosome 14. Eur. J. Hum. Genet 24(11), 1617–21 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Z. Wu, M.E. Martinez, D.L. St Germain, A. Hernandez, Type 3 deiodinase role on central thyroid hormone action affects the leptin-melanocortin system and circadian activity. Endocrinology 158(2), 419–30 (2017)

    Article  CAS  PubMed  Google Scholar 

  95. R.P. Peeters, A. Hernandez, L. Ng, M. Ma, D.S. Sharlin, M. Pandey et al. Cerebellar abnormalities in mice lacking type 3 deiodinase and partial reversal of phenotype by deletion of thyroid hormone receptor alpha1. Endocrinology 154(1), 550–61 (2013)

    Article  CAS  PubMed  Google Scholar 

  96. F. Salas-Lucia, C. Fekete, R. Sinkó, P. Egri, K. Rada, Y. Ruska et al. AXONAL T3 UPTAKE AND TRANSPORT CAN TRIGGER THYROID HORMONE SIGNALING IN THE BRAIN. eLife. 12, e82683 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  97. M.S. Benedetti, R. Whomsley, E. Baltes, F. Tonner, Alteration of thyroid hormone homeostasis by antiepileptic drugs in humans: involvement of glucuronosyltransferase induction. Eur. J. Clin. Pharm. 61(12), 863–72 (2005)

    Article  CAS  Google Scholar 

  98. J. Eirís-Puñal, M. Del Río-Garma, M.C. Del Río-Garma, S. Lojo-Rocamonde, I. Novo-Rodríguez, M. Castro-Gago, Long-term treatment of children with epilepsy with valproate or carbamazepine may cause subclinical hypothyroidism. Epilepsia 40(12), 1761–6 (1999)

    Article  PubMed  Google Scholar 

  99. K.A. Findlay, E. Kaptein, T.J. Visser, B. Burchell, Characterization of the uridine diphosphate-glucuronosyltransferase-catalyzing thyroid hormone glucuronidation in man. J. Clin. Endocrinol. Metab. 85(8), 2879–83 (2000)

    CAS  PubMed  Google Scholar 

  100. D.D. Vargens, R.R. Neves, D.A. Bulzico, E.B. Ojopi, R.M. Meirelles, C.N. Pessoa et al. Association of the UGT1A1-53(TA)n polymorphism with L-thyroxine doses required for thyrotropin suppression in patients with differentiated thyroid cancer. Pharmacogenet Genomics 21(6), 341–3 (2011)

    Article  CAS  PubMed  Google Scholar 

  101. A.B. Santoro, C.J. Struchiner, G. Suarez-Kurtz, L-thyroxine doses required for TSH suppression in patients with differentiated thyroid cancer: Effect of a novel UGT1 marker, rs11563250A > G. Br. J. Clin. Pharm. 82(5), 1402–3 (2016)

    Article  CAS  Google Scholar 

  102. S. Chen, I. Laverdiere, A. Tourancheau, D. Jonker, F. Couture, E. Cecchin et al. A novel UGT1 marker associated with better tolerance against irinotecan-induced severe neutropenia in metastatic colorectal cancer patients. Pharmacogenomics J. 15(6), 513–20 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. A.B. Santoro, D.D. Vargens, C. Barros Filho Mde, D.A. Bulzico, L.P. Kowalski, R.M. Meirelles et al. Effect of UGT1A1, UGT1A3, DIO1 and DIO2 polymorphisms on L-thyroxine doses required for TSH suppression in patients with differentiated thyroid cancer. Br. J. Clin. Pharm. 78(5), 1067–75 (2014)

    Article  CAS  Google Scholar 

  104. M.H. Kester, E. Kaptein, T.J. Roest, C.H. van Dijk, D. Tibboel, W. Meinl et al. Characterization of human iodothyronine sulfotransferases. J. Clin. Endocrinol. Metab. 84(4), 1357–64 (1999)

    CAS  PubMed  Google Scholar 

  105. M. Moreno, M.J. Berry, C. Horst, R. Thoma, F. Goglia, J.W. Harney et al. Activation and inactivation of thyroid hormone by type I iodothyronine deiodinase. FEBS Lett. 344(2-3), 143–6 (1994)

    Article  CAS  PubMed  Google Scholar 

  106. K. Kurogi, T. Shimohira, H. Kouriki-Nagatomo, G. Zhang, E.R. Miller, Y. Sakakibara et al. Human cytosolic sulphotransferase SULT1C3: genomic analysis and functional characterization of splice variant SULT1C3a and SULT1C3d. J. Biochem 162(6), 403–14 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. T.M. Ortiga-Carvalho, A.R. Sidhaye, F.E. Wondisford, Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat. Rev. Endocrinol. 10(10), 582–91 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. J. Anselmo, D. Cao, T. Karrison, R.E. Weiss, S. Refetoff, Fetal loss associated with excess thyroid hormone exposure. Jama 292(6), 691–5 (2004)

    Article  CAS  PubMed  Google Scholar 

  109. F. Salas-Lucia, M.N. Stan, H. James, A. Rajwani, X.H. Liao, A.M. Dumitrescu et al. Effect of the fetal THRB genotype on the placenta. J. Clin. Endocrinol. Metab. 108(10), e944–e948 (2023).

    Article  PubMed  Google Scholar 

  110. P. Srichomkwun, J. Anselmo, X.H. Liao, G.S. Hones, L.C. Moeller, M. Alonso-Sampedro et al. Fetal exposure to high maternal thyroid hormone levels causes central resistance to thyroid hormone in adult humans and mice. J. Clin. Endocrinol. Metab. 102(9), 3234–40 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  111. H.G. Sørensen, W.M. van der Deure, P.S. Hansen, R.P. Peeters, M.M. Breteler, K.O. Kyvik et al. Identification and consequences of polymorphisms in the thyroid hormone receptor alpha and beta genes. Thyroid 18(10), 1087–94 (2008)

    Article  PubMed  Google Scholar 

  112. L. Goumidi, F. Flamant, C. Lendon, D. Galimberti, F. Pasquier, E. Scarpini et al. Study of thyroid hormone receptor alpha gene polymorphisms on Alzheimer’s disease. Neurobiol. Aging 32(4), 624–30 (2011)

    Article  CAS  PubMed  Google Scholar 

  113. J.M. Fernández-Real, D. Corella, L. Goumidi, J.M. Mercader, S. Valdés, G. Rojo Martínez et al. Thyroid hormone receptor alpha gene variants increase the risk of developing obesity and show gene-diet interactions. Int J. Obes. (Lond.) 37(11), 1499–505 (2013)

    Article  PubMed  Google Scholar 

  114. S.I. Al-Azzam, K.H. Alzoubi, O. Khabour, O. Al-Azzeh, The associations of polymorphisms of TSH receptor and thyroid hormone receptor genes with L-thyroxine treatment in hypothyroid patients. Hormones (Athens) 13(3), 389–97 (2014)

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP proc. N° 2021/12746-3) (MOR); the Pró-Reitoria de Extensão (PROEX,6411133/2019-M.O. Ribeiro) (MOR); and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK – DK15070, DK58538, DK65066, DK77148) (ACB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio C. Bianco.

Ethics declarations

Conflict of interest

A.B. is a consultant for Abbvie, Allergan, Synthonics, Sention, and Thyron. The other authors have no relevant disclosures.

Ethical approval

This article does not contain any studies with human participants (or experimental animals) performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penna, G.C., Salas-Lucia, F., Ribeiro, M.O. et al. Gene polymorphisms and thyroid hormone signaling: implication for the treatment of hypothyroidism. Endocrine (2023). https://doi.org/10.1007/s12020-023-03528-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12020-023-03528-y

Keywords

Navigation