Skip to main content
Log in

Parathyroid carcinoma: molecular therapeutic targets

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Parathyroid carcinoma (PC) is an extremely rare malignant tumor of the parathyroid glands, accounting for less than 1% of primary hyperparathyroidism, commonly characterized by severe and unmanageable hypercalcemia, aggressive behavior, high metastatic potential, and poor prognosis. PC manifests prevalently as a sporadic tumor and only occasionally it is part of congenital syndromic and non-syndromic endocrine diseases. Molecular pathogenesis of this form of parathyroid tumor is not fully elucidated and it appears to be caused by multiple genetic and epigenetic drivers, differing among affected patients and not yet clearly stated in distinguishing PC from the benign parathyroid adenoma (PA). Congenital forms of PC have been prevalently associated with germline heterozygous loss-of-function mutations of the CDC73 tumor suppressor gene, both in the context of the hyperparathyroidism jaw-tumor syndrome (HPT-JT) and of the isolated familial hyperparathyroidism (FIPH). Currently, surgical en bloc resection of affected gland(s) and other involved structures is the elective therapy for both primary and recurrent PC. However, it usually results ineffective for advance and metastatic disease, and a high percentage of post-operative recurrence is reported. Targeted medical therapies for surgically untreatable PC, based on the molecular profile of PC samples, are, therefore, needed. The characterization of genetic and epigenetic alterations and deregulated pathways in PC samples will be of fundamental importance to tailor treatment for each patient. Here, we reviewed main findings on molecular pathogenetic aspects of PC, and the current state of the art of therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Gao, P. Wang, J. Lu, B. Pan, D. Guo, Z. Zhang, A. Wang, M. Zhang, J. Sun, W. Wang, Z. Liang, Diagnostic significance of parafibromin expression in parathyroid carcinoma. Hum. Pathol. 127, 28–38 (2022). https://doi.org/10.1016/j.humpath.2022.05.014

    Article  CAS  PubMed  Google Scholar 

  2. S. Leonard-Murali, T. Ivanics, D.S. Kwon, X. Han, C.P. Steffes, R. Shah, Local resection versus radical surgery for parathyroid carcinoma: a national cancer database analysis. Eur. J. Surg. Oncol. 47, 2768–2773 (2021). https://doi.org/10.1016/j.ejso.2021.06.026

    Article  PubMed  PubMed Central  Google Scholar 

  3. W.M. Lo, M.L. Good, N. Nilubol, N.D. Perrier, D.T. Patel, Tumor size and presence of metastatic disease at diagnosis are associated with disease-specific survival in parathyroid carcinoma. Ann. Surg. Oncol. 25, 2535–2540 (2018). https://doi.org/10.1245/s10434-018-6559-6

    Article  PubMed  PubMed Central  Google Scholar 

  4. L.K. Long, R.S. Sippel, Current and future treatment for parathyroid carcinoma. Int. J. Endo. Oncol. 5(1), IJE06 (2018). https://doi.org/10.2217/ije-2017-0011

    Article  CAS  Google Scholar 

  5. C.N. Clarke, P. Katsonis, T.K. Hsu, A.M. Koire, A. Silva-Figueroa, I. Christakis, M.D. Williams, M. Kutahyalioglu, L. Kwatampora, Y. Xi, J.E. Lee, E.S. Koptez, N.L. Busaidy, N.D. Perrier, O. Lichtarge, Comprehensive genomic characterization of parathyroid cancer identifies novel candidate driver mutations and core pathways. J. Endocr. Soc. 3(3), 544–559 (2018). https://doi.org/10.1210/js.2018-00043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. F. Marini, F. Giusti, G. Palmini, G. Perigli, R. Santoro, M.L. Brandi, Genetics and epigenetics of parathyroid carcinoma. Front. Endocrinol. 13, 834362 (2022). https://doi.org/10.3389/fendo.2022.834362

    Article  Google Scholar 

  7. N.D. Perrier, A. Arnold, J. Costa-Guda, N.L. Busaidy, H. Nguyen, H.H. Chuang, M.L. Brandi, Hereditary endocrine tumours: current state-of-the-art and research opportunities: new and future perspectives for parathyroid carcinoma. Endocr. Relat. Cancer 27(8), T53–T63 (2020). https://doi.org/10.1530/ERC-20-0018

    Article  PubMed  Google Scholar 

  8. R. Uljanovs, S. Sinkarevs, B. Strumfs, L. Vidusa, K. Merkurjeva, I. Strumfa, Immunohistochemical profile of parathyroid tumours: a comprehensive review. Int. J. Mol. Sci. 23(13), 6981 (2022). https://doi.org/10.3390/ijms23136981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. C. Pandya, A.V. Uzilov, J. Bellizzi, C.Y. Lau, A.S. Moe, M. Strahl, W. Hamou, L.C. Newman, M.Y. Fink, Y. Antipin, W. Yu, M. Stevenson, B.M. Cavaco, B.T. The, R.V. Thakker, H. Morreau, E.E. Schadt, R. Sebra, S.D. Li, A. Arnold, R. Chen, Genomic profiling reveals mutational landscape in parathyroid carcinomas. Jci. Insight 2(6), e92061 (2017). https://doi.org/10.1172/jci.insight.92061

    Article  PubMed  PubMed Central  Google Scholar 

  10. L. Zhao, L.H. Sun, D.M. Liu, X.Y. He, B. Tao, G. Ning, J.M. Liu, H.Y. Zhao, Copy number variation in CCND1 gene is implicated in the pathogenesis of sporadic parathyroid carcinoma. World J. Surg. 38(7), 1730–1737 (2014). https://doi.org/10.1007/s00268-014-2455-9

    Article  PubMed  Google Scholar 

  11. H.S. Park, Y.H. Lee, N. Hong, D. Won, Y. Rhee, Germline mutations related to primary hyperparathyroidism identified by next-generation sequencing. Front. Endocrinol. 13, 853171 (2022). https://doi.org/10.3389/fendo.2022.853171

    Article  Google Scholar 

  12. Y. Hu, X. Zhang, O. Wang, Y. Bi, X. Xing, M. Cui, M. Wang, W. Tao, Q. Liao, Y. Zhao, The genomic profile of parathyroid carcinoma based on whole-genome sequencing. Int. J. Cancer 147(9), 2446–2457 (2020). https://doi.org/10.1002/ijc.33166

    Article  CAS  PubMed  Google Scholar 

  13. H. Kang, D. Pettinga, A.D. Schubert, P.W. Ladenson, D.W. Ball, J.H. Chung, A.B. Schrock, R. Madison, G.M. Frampton, P.J. Stephens, J.S. Ross, V.A. Miller, S.M. Ali, Genomic profiling of parathyroid carcinoma reveals genomic alterations suggesting benefit from therapy. Oncologist 24(6), 791–797 (2019). https://doi.org/10.1634/theoncologist.2018-0334

    Article  CAS  PubMed  Google Scholar 

  14. M. Kutahyalioglu, H.T. Nguyen, L. Kwatampora, C. Clarke, A. Silva, E. Ibrahim, S.G. Waguespack, M.E. Cabanillas, C. Jimenez, M.I. Hu, S.I. Sherman, S. Kopetz, R. Broaddus, R. Dadu, K. Wanland, M. Williams, M. Zafereo, N. Perrier, N.L. Busaidy, Genetic profiling as a clinical tool in advanced parathyroid carcinoma. J. Cancer Res. Clin. Oncol. 145(8), 1977–1986 (2019)

    Article  PubMed  Google Scholar 

  15. H.L. Robbins, A. Hague, The PI3K/Akt pathway in tumors of endocrine tissues. Front. Endocrinol. 6, 188 (2015). https://doi.org/10.1007/s00432-019-02945-9

    Article  Google Scholar 

  16. S.H. Kong, Updates of genomics and proteomics of parathyroid carcinoma. Endocrines 3, 745–752 (2022). https://doi.org/10.3390/endocrines3040061

    Article  CAS  Google Scholar 

  17. A. Riccardi, C. Lemos, R. Ramos, J. Bellizzi, K. Parham, T.C. Brown, R. Korah, T. Carling, J. Costa-Guda, A. Arnold, PIK3CA mutational analysis of parathyroid adenomas. JBMR 4(6), e10360 (2020). https://doi.org/10.1002/jbm4.10360

    Article  CAS  Google Scholar 

  18. T. Zhan, N. Rindtorff, M. Boutros, Wnt signaling in cancer. Oncogene 36, 1461–1473 (2017). https://doi.org/10.1038/onc.2016.304

    Article  CAS  PubMed  Google Scholar 

  19. J. Svedlund, M. Aurén, M. Sundström, H. Dralle, G. Akerström, P. Björklund, G. Westin, Aberrant WNT/β-catenin signaling in parathyroid carcinoma. Mol. Cancer 9, 294 (2010). https://doi.org/10.1186/1476-4598-9-294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. J. Svedlund, E. Barazeghi, P. Stålberg, P. Hellman, G. Åkerström, P. Björklund, G. Westin, The histone methyltransferase EZH2, an oncogene common to benign and malignant parathyroid tumors. Endocr. Relat. Cancer 21(2), 231–239 (2014). https://doi.org/10.1530/ERC-13-0497

    Article  CAS  PubMed  Google Scholar 

  21. L. Sulaiman, C.C. Juhlin, I.L. Nilsson, O. Fotouhi, C. Larsson, J. Hashemi, Global and gene-specific promoter methylation analysis in primary hyperparathyroidism. Epigenetics 8, 646–655 (2013). https://doi.org/10.4161/epi.24823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. L.F. Starker, J. Svedlund, R. Udelsman, H. Dralle, G. Akerström, G. Westin, R.P. Lifton, P. Björklund, T. Carling, The DNA methylome of benign and malignant parathyroid tumors. Genes. Chromosomes Cancer 50, 735–745 (2011). https://doi.org/10.1002/gcc.20895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C.C. Juhlin, N.B. Kiss, A. Villablanca, F. Haglund, J. Nordenström, A. Höög, C. Larsson, Frequent promoter hypermethylation of the APC and RASSF1A tumour suppressors in parathyroid tumours. PLoS ONE 5, e9472 (2010). https://doi.org/10.1371/journal.pone.0009472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J. Svedlund, S. Koskinen Edblom, V.E. Marquez, G. Åkerström, P. Björklund, G. Westin, Hypermethylated in cancer 1 (HIC1), a tumor suppressor gene epigenetically deregulated in hyperparathyroid tumors by histone H3 lysine modification. J. Clin. Endocrinol. Metab. 2012(97), E1307–E1315 (2012). https://doi.org/10.1210/jc.2011-3136

    Article  CAS  Google Scholar 

  25. S. Corbetta, V. Vaira, V. Guarnieri, A. Scillitani, C. Eller-Vainicher, S. Ferrero, L. Vicentini, I. Chiodini, M. Bisceglia, P. Beck-Peccoz, S. Bosari, A. Spada, Differential expression of microRNAs in human parathyroid carcinomas compared with normal parathyroid tissue. Endocr. Relat. Cancer 17(1), 135–146 (2010). https://doi.org/10.1677/ERC-09-0134

    Article  CAS  PubMed  Google Scholar 

  26. S. Liu, Z. Wang, Z. Liu, S. Shi, Z. Zhang, J. Zhang, H. Lin, miR-221/222 activate the Wnt/β-catenin signaling to promote triple-negative breast cancer. J. Mol. Cell. Biol. 10(4), 302–315 (2018). https://doi.org/10.1093/jmcb/mjy041

    Article  CAS  PubMed  Google Scholar 

  27. F. Marini, F. Giusti, G. Palmini, C. Aurilia, S. Donati, M.L. Brandi, Parathyroid carcinoma: update on pathogenesis and therapy. Endocrines 4(1), 205–235 (2023). https://doi.org/10.3390/endocrines4010018

    Article  CAS  Google Scholar 

  28. B. Guan, J.M. Welch, J.C. Sapp, H. Ling, Y. Li, J.J. Johnston, E. Kebebew, L.G. Biesecker, W.F. Simonds, S.J. Marx, S.K. Agarwal, GCM2-activating mutations in familial isolated hyperparathyroidism. Am. J. Hum. Genet. 99(5), 1034–1044 (2016). https://doi.org/10.1016/j.ajhg.2016.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. L. Canaff, V. Guarnieri, Y. Kim, B.Y.L. Wong, A. Nolin-Lapalme, D.E.C. Cole, S. Minisola, C. Eller-Vainicher, F. Cetani, A. Repaci, D. Turchetti, S. Corbetta, A. Scillitani, D. Goltzman, Novel Glial Cells Missing-2 (GCM2) variants in parathyroid disorders. Eur. J. Endocrinol. 186(3), 351–366 (2022). https://doi.org/10.1016/10.1530/EJE-21-0433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. A. Song, Y. Yang, Y. Wang, S. Liu, M. Nie, Y. Jiang, M. Li, W. Xia, O. Wang, X. Xing, Germline GCM2 Mutation Screening in Chinese Primary Hyperparathyroidism Patients. Endocr. Pract. 26(10), 1093–1104 (2020). https://doi.org/10.4158/EP-2020-0132

    Article  PubMed  Google Scholar 

  31. R. Rahbari, A.K. Holloway, M. He, E. Khanafshar, O.H. Clark, E. Kebebew, Identification of differentially expressed microRNA in parathyroid tumors. Ann. Surg. Oncol. 18(4), 1158–1165 (2011). https://doi.org/10.1245/s10434-010-1359-7

    Article  PubMed  Google Scholar 

  32. J. Krupinova, N. Mokrysheva, V. Petrov, E. Pigarova, A. Eremkina, E. Dobreva, A. Ajnetdinova, G. Melnichenko, A. Tiulpakov, Serum circulating miRNA-342-3p as a potential diagnostic biomarker in parathyroid carcinomas: a pilot study. Endocrinol. Diabetes Metab. 4(4), e00284 (2021). https://doi.org/10.1002/edm2.284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. C. Verdelli, I. Forno, V. Vaira, S. Corbetta, MicroRNA deregulation in parathyroid tumours suggests an embryonic signature. J. Endocrinol. Investig. 38(4), 383–388 (2015). https://doi.org/10.1007/s40618-014-0234-y

    Article  CAS  Google Scholar 

  34. A. Morotti, I. Forno, C. Verdelli, V. Guarnieri, F. Cetani, A. Terrasi, R. Silipigni, S. Guerneri, V. Andrè, A. Scillitani, L. Vicentini, S. Ferrero, S. Corbetta, V. Vaira, The oncosuppressors MEN1 and CDC73 are involved in lncRNA deregulation in human parathyroid tumors. J. Bone Miner. Res 35(12), 2423–2431 (2020). https://doi.org/10.1002/jbmr.4154

    Article  CAS  PubMed  Google Scholar 

  35. A. Morotti, F. Cetani, G. Passoni, S. Borsari, E. Pardi, V. Guarnieri, C. Verdelli, G.S. Tavanti, L. Valenti, C. Bianco, S. Ferrero, S. Corbetta, V. Vaira, The long non-coding BC200 is a novel circulating biomarker of parathyroid carcinoma. Front. Endocrinol. 13, 869006 (2022). https://doi.org/10.3389/fendo.2022.869006

    Article  Google Scholar 

  36. E.A. Asare, C. Sturgeon, D.J. Winchester, L. Liu, B. Palis, N.D. Perrier, D.B. Evans, D.P. Winchester, T.S. Wang, Parathyroid carcinoma: an update on treatment outcomes and prognostic factors from the National Cancer Data Base (NCDB). Ann. Surg. Oncol. 22(12), 3990–3995 (2015). https://doi.org/10.1245/s10434-015-4672-3

    Article  PubMed  Google Scholar 

  37. F. Cetani, E. Pardi, C. Marcocci, Parathyroid carcinoma. in Parathyroid Disorders. Focusing on Unmet Needs ed. by M.L. Brandi Front. Horm. Res., Kager. 51, pp. 63–76 (2019). https://doi.org/10.1159/isbn.978-3-318-06409-4

  38. S. Storvall, E. Ryhänen, F.V. Bensch, I. Heiskanen, S. Kytölä, T. Ebeling, S. Mäkelä, C. Schalin-Jäntti, Recurrent metastasized parathyroid carcinoma-long-term remission after combined treatments with surgery, radiotherapy, cinacalcet, zoledronic acid, and temozolomide. JBMR 3(4), e10114 (2018). https://doi.org/10.1002/jbm4.10114

    Article  CAS  Google Scholar 

  39. S. Storvall, E. Ryhänen, I. Heiskanen, T. Vesterinen, F.V. Bensch, J. Schildt, S. Kytölä, A. Karhu, J. Arola, C. Schalin-Jäntti, MGMT promoter methylation and parathyroid carcinoma. J. Endocr. Soc. 3(11), 2114–2122 (2019). https://doi.org/10.1210/js.2019-00175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. S.J. Silverberg, M.R. Rubin, C. Faiman, M. Peacock, D.M. Shoback, R.C. Smallridge, L.E. Schwanauer, K.A. Olson, P. Klassen, J.P. Bilezikian, Cinacalcet hydrochloride reduces the serum calcium concentration in inoperable parathyroid carcinoma. J. Clin. Endocrinol. Metab. 92(10), 3803–3808 (2007). https://doi.org/10.1210/jc.2007-0585

    Article  CAS  PubMed  Google Scholar 

  41. Y. Takeuchi, S. Takahashi, D. Miura, M. Katagiri, N. Nakashima, H. Ohishi, R. Shimazaki, Y. Tominaga, Cinacalcet hydrochloride relieves hypercalcemia in Japanese patients with parathyroid cancer and intractable primary hyperparathyroidism. J. Bone Miner. Metab. 35(6), 616–622 (2017). https://doi.org/10.1007/s00774-016-0797-0

    Article  CAS  PubMed  Google Scholar 

  42. T. Tian, X. Li, J. Zhang, mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. Int. J. Mol. Sci. 20(3), 755 (2019). https://doi.org/10.3390/ijms20030755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. A.C. Lazaris, S. Tseleni-Balafouta, T. Papathomas, T. Brousalis, G. Thomopoulou, G. Agrogiannis, E.S. Patsouris, Immunohistochemical investigation of angiogenic factors in parathyroid proliferative lesions. Eur. J. Endocrinol. 154(6), 827–833 (2006). https://doi.org/10.1530/eje.1.02168

    Article  CAS  PubMed  Google Scholar 

  44. X.J. Chen, A.Q. Ren, L. Zheng, E.D. Zheng, Predictive value of KDM5C alterations for immune checkpoint inhibitors treatment outcomes in patients with cancer. Front. Immunol. 12, 664847 (2021). https://doi.org/10.3389/fimmu.2021.664847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. L. Rozhinskaya, E. Pigarova, E. Sabanova, E. Mamedova, I. Voronkova, J. Krupinova, L. Dzeranova, A. Tiulpakov, V. Gorbunova, N. Orel, A. Zalian, G. Melnichenko, I. Dedov, Diagnosis and treatment challenges of parathyroid carcinoma in a 27-year-old woman with multiple lung metastases. Endocrinol. Diabetes Metab. Case Rep. 2017, 16–0113 (2017). https://doi.org/10.1530/EDM-16-0113

    Article  PubMed  PubMed Central  Google Scholar 

  46. H. Makino, M. Notsu, I. Asayama, H. Otani, M. Morita, M. Yamamoto, M. Yamauchi, M. Nakao, H. Miyake, A. Araki, S. Uchino, K. Kanasaki, Successful control of hypercalcemia with sorafenib, evocalcet, and denosumab combination therapy for recurrent parathyroid carcinoma. Intern. Med. 61(22), 3383–3390 (2022). https://doi.org/10.2169/internalmedicine.9261-21

    Article  PubMed  PubMed Central  Google Scholar 

  47. N. Alharbi, S.L. Asa, M. Szybowska, R.H. Kim, S. Ezzat, Intrathyroidal parathyroid carcinoma: an atypical thyroid lesion. Front. Endocrinol. 9, 641 (2018). https://doi.org/10.3389/fendo.2018.00641

    Article  Google Scholar 

  48. K. Vandyke, S. Fitter, J. Drew, S. Fukumoto, C.G. Schultz, N.A. Sims, D.T. Yeung, T.P. Hughes, A.C. Zannettino, Prospective histomorphometric and DXA evaluation of bone remodeling in imatinib-treated CML patients: evidence for site-specific skeletal effects. J. Clin. Endocrinol. Metab. 98(1), 67–76 (2013). https://doi.org/10.1210/jc.2012-2426

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MLB, FM, and FG contributed to the review conception and design. Data research and collection from published literature were performed by GP, CAeSD. The first draft of the manuscript was written by FM, and revised by FG and MLB. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Maria Luisa Brandi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marini, F., Giusti, F., Palmini, G. et al. Parathyroid carcinoma: molecular therapeutic targets. Endocrine 81, 409–418 (2023). https://doi.org/10.1007/s12020-023-03376-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03376-w

Keywords

Navigation