Skip to main content

Advertisement

Log in

MiR-203a-3p, miR-204-3p, miR-222-3p as useful diagnostic and prognostic tool for thyroid neoplasia spectrum

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

The challenge in the diagnosis and treatment of thyroid carcinoma is to correctly classify neoplasias with overlapping features and to identify the high-risk patients among those with a less aggressive form, in order to personalize the treatment of thyroid carcinoma patients accordingly.

Methods

MiR-203a-3p, miR-204-3p, and miR-222-3p levels were determined in 99 cases of thyroid neoplasias (77 papillary thyroid carcinomas (PTC) of diverse variants, 12 follicular thyroid adenomas (FTA) and 10 nodular goiters (NG)) along with 99 adjacent non-malignant thyroid tissues using quantitative RT-PCR. The results were evaluated in comparison with the clinicopathological features of the patients and available TCGA data.

Results

Down-regulated miR-203a-3p indicates the presence of thyroid tumor (PTC or FTA) with high sensitivity (75%) and specificity (73%), while its up-regulation indicates NG. If miR-203a-3p is down-regulated, up-regulated miR-204-3p with high sensitivity (83.3%) and specificity (74.4%) indicates FTA presence, while up-regulated miR-222-3p, with high sensitivity (76.6%) and specificity (75.0%), points to PTC. The expression of miR-204-3p and miR-222-3p depends on the PTC subtype (P < 0.05). While the deregulated expression of tested miRs is associated with a long-range of unfavorable clinicopathological parameters of PTC, only abundant expression of miR-222-3p may be used as an independent predictive factor for the presence of extrathyroid invasion and advanced pTNM stage of PTC (P < 0.05).

Conclusion

Successive evaluation of miR-203a-3p, miR-204-3p, and miR-222-3p expression can help in the differential diagnosis of thyroid neoplasias. A high relative value of miR-222-3p expression is an independent predictive factor for the presence of extrathyroid invasion and advanced pTNM stage of PTC. The panel consisting of miR-203a-3p, miR-204-3p, and miR-222-3p could be used as a diagnostic and prognostic tool for personalizing the treatment of thyroid cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. J.M. Cameselle-Teijeiro, C. Eloy, M. Sobrinho-Simões, Pitfalls in Challenging Thyroid Tumors: emphasis on Differential Diagnosis and Ancillary Biomarkers. Endocr. Pathol 31(3), 197–217 (2020). https://doi.org/10.1007/s12022-020-09638-x

    Article  Google Scholar 

  2. S. Suster, Thyroid tumors with a follicular growth pattern: problems in differential diagnosis. Arch. Pathol. Lab. Med. 130(7), 984–988 (2006). https://doi.org/10.5858/2006-130-984-TTWAFG

    Article  Google Scholar 

  3. O. Mete, S.L. Asa, Pitfalls in the diagnosis of follicular epithelial proliferations of the thyroid. Adv. Anat. Pathol. 19(6), 363–373 (2012). https://doi.org/10.1097/PAP.0b013e318271a5ac.

    Article  Google Scholar 

  4. L. Davies, H.G. Welch, Current thyroid cancer trends in the United States. JAMA Otolaryngol. Head. Neck Surg. 140(4), 317–322 (2014). https://doi.org/10.1001/jamaoto.2014.1

    Article  Google Scholar 

  5. R.L. Siegel, K.D. Miller, A. Jemal, Cancer Statistics, 2017. CA Cancer J. Clin. 67(1), 7–30 (2017). https://doi.org/10.3322/caac.21387

    Article  Google Scholar 

  6. V.A. LiVolsi, J. Albores-Saavedra, S.L. Asa et al. Papillary carcinoma. In: ed. R. De Lellis, R. Lloyd, P.U. Heitz et al. WHO Classification of Tumors. Pathology and Genetics of Tumours of Endocrine Organs. (IARC Press, Lyon, France, 2004). p. 57–66.

  7. M.R. Pelizzo, I.M. Boschin, A. Toniato et al. Papillary thyroid carcinoma: 35-year outcome and prognostic factors in 1858 patients. Clin. Nucl. Med. 32(6), 440–444 (2007). https://doi.org/10.1097/RLU.0b013e31805375ca

    Article  Google Scholar 

  8. Y. Ito, A. Miyauchi, M. Kihara et al. Overall survival of papillary thyroid carcinoma patients: a single-institution longterm follow-up of 5897 patients. World J. Surg. 42, 615e22 (2018). https://doi.org/10.1007/s00268-018-4479-z

    Article  Google Scholar 

  9. F.D. Gilliland, W.C. Hunt, D.M. Morris et al. Prognostic factors for thyroid carcinoma. A population-based study of 15,698 cases from the Surveillance, Epidemiology and End Results (SEER) program 1973-1991. Cancer 79(3), 564–573 (1997). https://doi.org/10.1002/(sici)1097-0142(19970201)79:3<564::aid-cncr20>3.0.co;2-0

    Article  CAS  Google Scholar 

  10. V. Ambros, The functions of animal microRNAs. Nature 431(7006), 350–355 (2004). https://doi.org/10.1038/nature02871.

    Article  CAS  Google Scholar 

  11. K. Saliminejad, H.R. Khorram Khorshid, S. Soleymani Fard et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J. Cell Physiol. 234(5), 5451–5465 (2019). https://doi.org/10.1002/jcp.27486.

    Article  CAS  Google Scholar 

  12. W.P. Kloosterman, R.H. Plasterk, The diverse functions of microRNAs in animal development and disease. Dev. Cell. 11(4), 441–450 (2006). https://doi.org/10.1016/j.devcel.2006.09.009.

    Article  CAS  Google Scholar 

  13. Z. Ali Syeda, S.S.S. Langden, C. Munkhzul et al. Regulatory Mechanism of MicroRNA Expression in Cancer. Int. J. Mol. Sci. 21(5), 1723 (2020). https://doi.org/10.3390/ijms21051723.

    Article  CAS  Google Scholar 

  14. T.A. Farazi, J.I. Hoell, P. Morozov et al. MicroRNAs in human cancer. Adv. Exp. Med. Biol. 774, 1–20 (2013). https://doi.org/10.1007/978-94-007-5590-1_1.

    Article  CAS  Google Scholar 

  15. Y.S. Lee, A. Dutta, MicroRNAs in cancer. Annu. Rev. Pathol. 4, 199–227 (2009). https://doi.org/10.1146/annurev.pathol.4.110807.092222.

    Article  CAS  Google Scholar 

  16. K. Santiago, Y. Chen Wongworawat, S. Khan. Differential MicroRNA-Signatures in Thyroid Cancer Subtypes. J. Oncol. 2052396 (2020). https://doi.org/10.1155/2020/2052396.

  17. M. Celano, F. Rosignolo, V. Maggisano, et al. MicroRNAs as Biomarkers in Thyroid Carcinoma. Int. J. Genom. 6496570 (2017). https://doi.org/10.1155/2017/6496570.

  18. M.S. Dettmer, A. Perren, H. Moch et al. MicroRNA profile of poorly differentiated thyroid carcinomas: new diagnostic and prognostic insights. J. Mol. Endocrinol. 52(2), 181–189 (2014). https://doi.org/10.1530/JME-13-0266

    Article  CAS  Google Scholar 

  19. S. Schwertheim, S.Y. Sheu, K. Worm et al. Analysis of deregulated miRNAs is helpful to distinguish poorly differentiated thyroid carcinoma from papillary thyroid carcinoma. Horm. Metab. Res. 41(6), 475–481 (2009). https://doi.org/10.1055/s-0029-1215593

    Article  CAS  Google Scholar 

  20. L. Yang, H. Liang, Y. Wang et al. MiRNA‐203 suppresses tumor cell proliferation, migration and invasion by targeting Slug in gastric cancer. Protein Cell 7(5), 383–387 (2016). https://doi.org/10.1007/s13238-016-0259-4

    Article  Google Scholar 

  21. A. You, L. Fu, Y. Li et al. MicroRNA-203 restrains epithelial-mesenchymal transition, invasion and migration of papillary thyroid cancer by downregulating AKT3. Cell Cycle 19(10), 1105–1121 (2020). https://doi.org/10.1080/15384101.2020.1746490

    Article  CAS  Google Scholar 

  22. J. Zhu, X. Zheng, X. Yang. Diagnostic and mechanistic values of microRNA-130a and microRNA-203 in patients with papillary thyroid carcinoma. J. Cell Biochem. Online ahead of print (2019). https://doi.org/10.1002/jcb.29498.

  23. F. Le, P. Luo, Q. Ouyang et al. WT1-AS Downregulates Survivin by Upregulating miR-203 in Papillary Thyroid Carcinoma. Cancer Manag. Res. 12, 443–449 (2020). https://doi.org/10.2147/CMAR.S232294

    Article  CAS  Google Scholar 

  24. X. Wu, L. Dai, Z. Zhang et al. Overexpression of microRNA-203 can downregulate survivin and function as a potential therapeutic target in papillary thyroid cancer. Oncol. Lett. 19(1), 61–68 (2020). https://doi.org/10.3892/ol.2019.11082

    Article  CAS  Google Scholar 

  25. Z.Y. Wu, S.M. Wang, Z.H. Chen et al. MiR-204 regulates HMGA2 expression and inhibits cell proliferation in human thyroid cancer. Cancer Biomark. 15(5), 535–542 (2015). https://doi.org/10.3233/CBM-150492

    Article  CAS  Google Scholar 

  26. L. Liu, J. Wang, X. Li et al. MiR-204-5p suppresses cell proliferation by inhibiting IGFBP5 in papillary thyroid carcinoma. Biochem. Biophys. Res. Commun. 457(4), 621–626 (2015). https://doi.org/10.1016/j.bbrc.2015.01.037

    Article  CAS  Google Scholar 

  27. F. Xia, W. Wang, B. Jiang et al. DNA methylation-mediated silencing of miR-204 is a potential prognostic marker for papillary thyroid carcinoma. Cancer Manag. Res. 11, 1249–1262 (2019). https://doi.org/10.2147/CMAR.S184566

    Article  CAS  Google Scholar 

  28. M. Ye, S. Dong, H. Hou et al. Oncogenic Role of Long Noncoding RNAMALAT1 in Thyroid Cancer Progression through Regulation of the miR-204/IGF2BP2/m6A-MYC Signaling. Mol. Ther. Nucleic Acids 23, 1–12 (2020). https://doi.org/10.1016/j.omtn.2020.09.023

    Article  CAS  Google Scholar 

  29. S.B. Edge, D.R. Byrd, C.C. Compton, editors: AJCC cancer staging manual. 7th edn. (Springer, New York, NY, 2010). p. 87–96

  30. F. Basolo, L. Torregrossa, R. Giannini et al. Correlation between the BRAF V600E mutation and tumor invasiveness in papillary thyroid carcinomas smaller than 20 millimeters: analysis of 1060 cases. J. Clin. Endocrinol. Metab. 95(9), 4197–4205 (2010). https://doi.org/10.1210/jc.2010-0337

    Article  CAS  Google Scholar 

  31. Y. Ito, T. Kudo, K. Kobayashi et al. Prognostic factors for recurrence of papillary thyroid carcinoma in the lymph nodes, lung, and bone: analysis of 5,768 patients with average 10-year follow-up. World J. Surg. 36(6), 1274–1278 (2012). https://doi.org/10.1007/s00268-012-1423-5

    Article  Google Scholar 

  32. M.J. Goldman, B. Craft, M. Hastie et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. (2020). https://doi.org/10.1038/s41587-020-0546-8.

  33. M.N. Nikiforova, G.C. Tseng, D. Steward et al. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J. Clin. Endocrinol. Metab. 93(5), 1600–1608 (2008). https://doi.org/10.1210/jc.2007-2696

    Article  CAS  Google Scholar 

  34. F. Rosignolo, L. Memeo, F. Monzani et al. MicroRNA-based molecular classification of papillary thyroid carcinoma. Int. J. Oncol. 50(5), 1767–1777 (2017). https://doi.org/10.3892/ijo.2017.3960

    Article  CAS  Google Scholar 

  35. Y. Lin, J. Jiang, Long non-coding RNA LINC00704 promotes cell proliferation, migration, and invasion in papillary thyroid carcinoma via miR-204-5p/HMGB1 axis. Open Life Sci. 15(1), 561–571 (2020). https://doi.org/10.1515/biol-2020-0057

    Article  CAS  Google Scholar 

  36. M. Dettmer, A. Perren, H. Moch et al. Comprehensive MicroRNA expression profiling identifies novel markers in follicular variant of papillary thyroid carcinoma. Thyroid 23(11), 1383–1389 (2013). https://doi.org/10.1089/thy.2012.0632

    Article  CAS  Google Scholar 

  37. Z. Wang, H. Zhang, L. He et al. Association between the expression of four upregulated miRNAs and extrathyroidal invasion in papillary thyroid carcinoma. OncoTargets Ther. 6, 281–287 (2013). https://doi.org/10.2147/OTT.S43014

    Article  CAS  Google Scholar 

  38. J.C. Lee, J.T. Zhao, R.J. Clifton-Bligh et al. MicroRNA-222 and microRNA-146b are tissue and circulating biomarkers of recurrent papillary thyroid. Cancer Cancer 119(24), 4358–4365 (2013). https://doi.org/10.1002/cncr.28254

    Article  CAS  Google Scholar 

  39. L. Yip, L. Kelly, Y. Shuai et al. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann. Surg. Oncol. 18(7), 2035–2041 (2011). https://doi.org/10.1245/s10434-011-1733-0

    Article  Google Scholar 

  40. A. Kondrotienė, A. Daukša, D. Pamedytytė et al. Papillary Thyroid Carcinoma Tissue miR-146b, -21, -221, -222, -181b Expression in Relation with Clinicopathological Features. Diagnostics (Basel) 11(3), 418 (2021). https://doi.org/10.3390/diagnostics11030418

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to Dubravka Cvejić, PhD for the great help in revising the paper.

Funding

The Ministry of Education, Science and Technological Development of the Republic of Serbia, no. 451-03-68/2022-14/ 200019.

Author information

Authors and Affiliations

Authors

Contributions

S.S.—investigation, data curation, writing original draft; Z.D.—methodology, validation; S.Š.—project administration; I.Đ.—writing - review & editing; J.J.M.—software, visualization; V.Ž.—resources; T.I.D.—conceptualization, formal analysis, supervision, writing - review & editing. All authors read and approved the final paper.

Corresponding author

Correspondence to Tijana Išić Denčić.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This study was conducted in accordance with the Helsinki Declaration and was approved by the Ethics Committee at the Center for Endocrine Surgery, Clinical Center of Serbia, Belgrade, Serbia (695/7-A).

Consent to participate

Written informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stojanović, S., Dobrijević, Z., Šelemetjev, S. et al. MiR-203a-3p, miR-204-3p, miR-222-3p as useful diagnostic and prognostic tool for thyroid neoplasia spectrum. Endocrine 79, 98–112 (2023). https://doi.org/10.1007/s12020-022-03185-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03185-7

Keywords

Navigation