Skip to main content
Log in

A novel 9 bp deletion (c.1271_1279delGTGCCCGCG) in exon 10 of CYP21A2 gene causing severe congenital adrenal hyperplasia

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder of adrenal steroidogenesis with a broad spectrum of clinical presentations, ranging from the severe classical salt-wasting (SW) and simple-virilizing (SV) form, to the mild nonclassical form. A large variety of CYP21A2 genotypes in correlation with phenotype have been described.

Materials and methods

DNA samples from a 14-day-old male newborn with clinical and laboratory signs of SW CAH and family members were subjected for molecular analysis of the nine most common point CYP21A2 mutations by ACRS/PCR method. Direct DNA sequencing of the whole CYP21A2 gene was performed to detect the second mutant allele in the patient. The in silico predicting analysis and the crystal structure analysis of the mutated CYP21A2 protein have been performed.

Results

Molecular analysis confirmed that the patient was compound heterozygote carrying p.Q318X mutation inherited from the mother and a novel c.1271_1279delGTGCCCGCG (p.G424_R426del) variant in exon 10 inherited from the father. The in silico predicting software tools classified the novel mutation as pathogenic. Crystal structure analysis showed that the three residues affected by the novel in-frame deletion form several hydrogen bonds that could lead to impaired stability and function of the CYP21A2 protein. These findings were concordant with the patient’s phenotype. The need of several molecular methods to elucidate the genotype in this patient has also been discussed.

Conclusions

A novel 9 bp deletion in CYP21A2 gene with predicted pathogenic effect on the enzyme activity was detected in neonatal patient causing severe SW CAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data sets used and/or analyzed during the current study are available from the corresponding author.

References

  1. D. El-Maouche, W. Arlt, D.P. Merke, Congenital adrenal hyperplasia. Lancet 390(10108), 2194–2210 (2017). https://doi.org/10.1016/S0140-6736(17)31431-9

    Article  CAS  PubMed  Google Scholar 

  2. M.I. New, Inborn errors of adrenal steroidogenesis. Mol. Cell. Endocrinol. 211(1–2), 75–83 (2003). https://doi.org/10.1016/j.mce.2003.09.013

    Article  CAS  PubMed  Google Scholar 

  3. H. Falhammar, A. Wedell, A. Nordenstrom, Biochemical and genetic diagnosis of 21-hydroxylase deficiency. Endocrine 50(2), 306–314 (2015). https://doi.org/10.1007/s12020-015-0731-6

    Article  CAS  PubMed  Google Scholar 

  4. V. Dolžan, J. Sólyom, G. Fekete, J. Kovács, V. Rakosnikova, F. Voltava et al., Mutational spectrum of steroid 21-hydroxylase and the genotype-phenotype association in the Middle European patients with congenital adrenal hyperplasia. Eur. J. Endocrinol. 153(1), 99–106 (2005). https://doi.org/10.1530/eje.1.01944

    Article  CAS  PubMed  Google Scholar 

  5. B. Dean, G.L. Chrisp, M. Quartararo, A.M. Maguire, S. Hameed, B.R. King et al., P450 oxidoreductase deficiency: a systematic review and meta-analysis of genotypes, phenotypes and their relationships. J. Clin. Endocrinol. Metab. 105(3), e42–e52 (2019). https://doi.org/10.1210/clinem/dgz255

    Article  Google Scholar 

  6. A. Al-Agha, A. Ocheltree, M. Al-Tamimi, Association between genotype, clinical presentation and severity of congenital adrenal hyperplasia: a review. Turk. J. Pediatr. 54(4), 323–332 (2012). https://www.researchgate.net/publication/236926857

  7. D. de Paula Michelatto, L. Karlsson, A.L.G. Lusa, C.D.A.M. Silva, L.J. Östberg, B. Persson et al., Functional and structural consequences of nine CYP21A2 mutations ranging from very mild to severe effects. Int. J. Endocrinol. 2016, 4209670 (2016). https://doi.org/10.1155/2016/4209670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A. Wedell, Molecular genetics of 21-hydroxylase deficiency. Endocr. Dev. 20, 80–87 (2011). https://doi.org/10.1159/000321223

    Article  CAS  PubMed  Google Scholar 

  9. J. Gonçalves, A. Friães, L. Moura, Congenital adrenal hyperplasia: focus on the molecular basis of 21-hydroxylase deficiency. Expert. Rev. Mol. Med. 9(11), 1–23 (2007). https://doi.org/10.1017/S1462399407000300

    Article  PubMed  Google Scholar 

  10. L.P. Tsai, H.H. Lee, Analysis CYP21A1P and the duplicated CYP21A2 genes. Gene 506(1), 261–262 (2012). https://doi.org/10.1016/j.gene.2012.06.045

    Article  CAS  PubMed  Google Scholar 

  11. M.L. Narasimhan, A. Khattab, Genetics of congenital adrenal hyperplasia and genotype-phenotype correlation. Fertil. Steril. 111(1), 24–29 (2019). https://doi.org/10.1016/j.fertnstert.2018.11.007

    Article  CAS  PubMed  Google Scholar 

  12. S.F. Witchel, Congenital adrenal hyperplasia. J. Pediatr. Adolesc. Gynecol. 30(5), 520–534 (2017). https://doi.org/10.1016/j.jpag.2017.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  13. P. Concolino, E. Mello, C. Zuppi, E. Capoluongo, Molecular diagnosis of congenital adrenal hyperplasia due to 21-hydroxylase deficiency: an update of new CYP21A2 mutations. Clin. Chem. Lab. Med. 48(8), 1057–1062 (2010). https://doi.org/10.1515/CCLM.2010.239

    Article  CAS  PubMed  Google Scholar 

  14. P. Concolino, A. Costella, Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency: a comprehensive focus on 233 pathogenic variants of CYP21A2 gene. Mol. Diagn. Ther. 22(3), 261–280 (2018). https://doi.org/10.1007/s40291-018-0319-y

    Article  CAS  PubMed  Google Scholar 

  15. Y. Liu, N. Liu, X. Xu, X. Zhang, Y. Zhang, G. Li et al., The spectrum of CYP21A2 gene mutations in patients with classic salt wasting form of 2l‐hydroxylase deficiency in a Chinese cohort. Mol. Genet. Genomic Med. 8(11), e1501 (2020). https://doi.org/10.1002/mgg3.1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Gidlöf, H. Falhammar, A. Thilén, U. von Döbeln, M. Ritzén, A. Wedell et al., One hundred years of congenital adrenal hyperplasia in Sweden: a retrospective, population-based cohort study. Lancet Diabetes Endocrinol. 1, 35–42 (2013). https://doi.org/10.1016/S2213-8587(13)70007-X

    Article  PubMed  Google Scholar 

  17. N. Krone, A. Braun, A.A. Roscher, D. Knorr, H.P. Schwarz, Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany. J. Clin. Endocrinol. Metab. 85(3), 1059–1065 (2000). https://doi.org/10.1210/jcem.85.3.6441

    Article  CAS  PubMed  Google Scholar 

  18. M. New, M. Abraham, B. Gonzalez, M. Dumic, M. Razzaghy-Azar, D. Chitayat et al., Genotype-phenotype correlation in 1507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Proc. Natl Acad. Sci. USA 110(7), 2611–2616 (2013). https://doi.org/10.1073/pnas.1300057110

    Article  PubMed  Google Scholar 

  19. S.A. Miller, D.D. Dykes, H.F. Polesky, A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16(3), 1215 (1988). https://doi.org/10.1093/nar/16.3.1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. H.H. Lee, H.T. Chao, H.T. Ng, K.B. Choo, Direct molecular diagnosis of CYP21 mutations in congenital adrenal hyperplasia. J. Med. Genet. 33(5), 371–375 (1996). https://doi.org/10.1136/jmg.33.5.371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. H.H. Lee, Y.J. Lee, C.Y. Lin, PCR-based detection of the CYP21 deletion and TNXA/TNXB hybrid in the RCCX module. Genomics 83(5), 944–950 (2004). https://doi.org/10.1016/J.YGENO.2003.11.006

    Article  CAS  PubMed  Google Scholar 

  22. Z. Xu, W. Chen, D.P. Merke, N.B. McDonnell, Comprehensive mutation analysis of the CYP21A2 gene an efficient multistep approach to the molecular diagnosis of congenital adrenal hyperplasia. J. Mol. Diagn. 15(6), 745–753 (2013). https://doi.org/10.1016/j.jmoldx.2013.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. I. Milacic, M. Barac, T. Milenkovic, M. Ugrin, K. Klaassen, A. Skakic et al., Molecular genetic study of congenital adrenal hyperplasia in Serbia: novel p.Leu129Pro and p.Ser165Pro CYP21A2 gene mutations. J. Endocrinol. Investig. 38(11), 1199–1210 (2015). https://doi.org/10.1007/s40618-015-0366-8

    Article  CAS  Google Scholar 

  24. V. Dolzan, M. Stopar-Obreza, M. Zerjav-Tansek, K. Breskvar, C. Krzisnik, T. Battelino, Mutational spectrum of congenital adrenal hyperplasia in Slovenian patients: a novel Ala-15Thr mutation and Pro30Leu within a larger gene conversion associated with a severe form of the disease. Eur. J. Endocrinol. 149(2), 137–144 (2003). https://doi.org/10.1530/eje.0.1490137

    Article  CAS  PubMed  Google Scholar 

  25. J. Hu, P.C. Ng, SIFT Indel: predictions for the functional effects of amino acid insertions/deletions in proteins. PLoS ONE. 8(10), e77940 (2013). https://doi.org/10.1371/journal.pone.0077940

    Article  CAS  PubMed  Google Scholar 

  26. Y. Choi, G.E. Sims, S. Murphy, J.R. Miller, A.P. Chan, Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7(10), e46688 (2012). https://doi.org/10.1371/journal.pone.0046688

    Article  CAS  PubMed  Google Scholar 

  27. K.A. Pagel, D. Antaki, A. Lian, M. Mort, D.N. Cooper, J. Sebat et al., Pathogenicity and functional impact of non-frameshifting insertion/deletion variation in the human genome. PLoS Comput. Biol. 15(6), e1007112 (2019). https://doi.org/10.1371/journal.pcbi.1007112

    Article  CAS  PubMed  Google Scholar 

  28. J. Honour, 17-Hydroxyprogesterone in children, adolescents and adults. Ann. Clin. Biochem. 51(4), 424–440 (2014). https://doi.org/10.1177/0004563214529748

    Article  CAS  PubMed  Google Scholar 

  29. V. Anastasovska, T. Milenković, M. Kocova, Direct molecular diagnosis of CYP21A2 point mutations in Macedonian and Serbian patients with 21-hydroxylase deficiency. J. Med. Biochem. 34(1), 52–57 (2015). https://doi.org/10.2478/jomb-2014-0048

    Article  PubMed  Google Scholar 

  30. A. Nordenstrom, H. Falhammar, Management of endocrine disease: diagnosis and management of the patient with non-classic CAH due to 21- hydroxylase deficiency. Eur. J. Endocrinol. 180(3), R127–R145 (2019). https://doi.org/10.1530/EJE-18-0712

    Article  PubMed  Google Scholar 

  31. N. Krone, W. Arlt, Genetics of congenital adrenal hyperplasia. Best Pract. Res. Clin. Endocrinol. Metab. 23(2), 181–192 (2009). https://doi.org/10.1016/j.beem.2008.10.014

    Article  CAS  PubMed  Google Scholar 

  32. The Human Gene Mutation Database. Available at: www.hgmd.cf.ac.uk/ac/index.php. Accessed 27 July (2018)

  33. P.W. Speiser, P.C. White, Congenital adrenal hyperplasia. N. Engl. J. Med. 349(8), 776–788 (2003). https://doi.org/10.1056/NEJMra021561

    Article  CAS  PubMed  Google Scholar 

  34. L. Simonetti, C.D. Bruque, C.S. Fernández, B. Benavides-Mori, M. Delea, J.E. Kolomenski et al., CYP21A2 mutation update: comprehensive analysis of databases and published genetic variants. Hum. Mutat. 39(1), 5–22 (2018). https://doi.org/10.1002/humu.23351

    Article  CAS  PubMed  Google Scholar 

  35. L.P. Tsai, C.F. Cheng, S.H. Chuang, H.H. Lee, Analysis of the CYP21A1P pseudogene: Indication of mutational diversity and CYP21A2-like and duplicated CYP21A2 genes. Anal. Biochem. 413(2), 133–141 (2011). https://doi.org/10.1016/j.ab.2011.02.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patient for getting permission to publish relative information.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The clinical diagnosis, treatment, and follow-up of the patient were performed by M.K. and N.Z. who conceived the paper. Material preparation, and ACRS/PCR molecular analysis as well as the discussion of molecular findings were performed by V.A. Sanger sequencing analysis was performed by M.S., A.S., and S.P. The model of the CYP21A2 protein using the crystal structure was made by K.K. All authors read and approved the final paper.

Corresponding author

Correspondence to Violeta Anastasovska.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This study was approved by the Human Research Ethics Committee of University Pediatric Clinic, Medical Faculty, Skopje, North Macedonia, and conducted under the instructions of the principles in the Declaration of Helsinki.

Informed consent

Written informed consent was obtained from the patient’s both parents for publication of this report.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anastasovska, V., Kocova, M., Zdraveska, N. et al. A novel 9 bp deletion (c.1271_1279delGTGCCCGCG) in exon 10 of CYP21A2 gene causing severe congenital adrenal hyperplasia. Endocrine 73, 196–202 (2021). https://doi.org/10.1007/s12020-021-02680-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02680-7

Keywords

Navigation