Skip to main content

Advertisement

Log in

Relationship of Vitamin D status with testosterone levels: a systematic review and meta-analysis

  • Meta- Analysis
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Despite a biological plausibility of a direct link between low vitamin D and androgen deficiency, the association remains inconclusive in epidemiological studies. Therefore, this systematic review and meta-analysis of case-control studies aim to assess whether and in what populations such an association can be demonstrated.

Methods

A systematic search was performed in PubMed, EMBASE, Cochrane Library, Web of science, Science Direct, and CINAHL. Standardized mean differences (SMDs) and 95% confidence intervals (CIs) in total testosterone (TT) levels between men with 25-hydroxyvitamin D (25(OH)D) <20 and ≥20 ng/mL were combined using random-effects models. Funnel plot and trim-and-fill analysis were used to assess publication bias. Heterogeneity source was explored by a sub-group analysis according to health-related characteristics of the study populations.

Results

Eighteen included studies collectively gave information on 9892 men with vitamin D deficiency and 10,675 controls. The pooled SMD revealed a slight, albeit just significant, positive association between 25(OH)D and TT (pooled SMD: −0.23, 95% CI: −0.45 to −0.01; P = 0.04) with a large between-study heterogeneity (I2 = 98%, Pfor heterogeneity < 0.00001). At the sub-group analysis, a significant positive association, along with noticeable decrease in heterogeneity, could only be demonstrated in studies of patients with frailty states (pooled SMD: −0.19; 95% CI: −0.27, −0.10,  P < 0.0001; I2 = 51%, Pfor heterogeneity = 0.06). A sensitivity analysis revealed a high stability of the result and the trim-and-fill adjustment for publication bias did not affect pooled estimate.

Conclusions

Both hypovitaminosis D and androgen deficiency should be regarded as markers of a poor health status, sharing common underlying aetiologies and risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Lips, Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr. Rev. 22, 477–501 (2001). https://doi.org/10.1210/edrv.22.4.0437

    Article  CAS  PubMed  Google Scholar 

  2. D.M. Lee, A. Tajar, T.W. O’Neill, D.B. O’Connor, G. Bartfai, S. Boonen, R. Bouillon, F.F. Casanueva, J.D. Finn, G. Forti, A. Giwercman, T.S. Han, I.T. Huhtaniemi, K. Kula, M. Ej Lean, M. Punab, A.J. Silman, D. Vanderschueren, F. Cw Wu, N. Pendleton, Lower vitamin D levels are associated with depression among community-dwelling European men. J. Psychopharmacol. 25, 1320–1328 (2011). https://doi.org/10.1177/0269881110379287

    Article  CAS  PubMed  Google Scholar 

  3. A. Barbonetti, F. Cavallo, S. D’Andrea, M. Muselli, G. Felzani, S. Francavilla, F. Francavilla, Lower Vitamin D levels are associated with depression in people with chronic spinal cord injury. Arch. Phys. Med. Rehabil. 98, 940–946 (2017). https://doi.org/10.1016/j.apmr.2016.11.006

    Article  PubMed  Google Scholar 

  4. S. Pilz, A. Tomaschitz, E. Ritz, T.R. Pieber, Vitamin D status and arterial hypertension: a systematic review. Nat. Rev. Cardiol. 6, 621–630 (2009). https://doi.org/10.1038/nrcardio.2009.135

    Article  CAS  PubMed  Google Scholar 

  5. A.G. Pittas, J. Lau, F.B. Hu, B. Dawson-Hughes, The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 92, 2017–2029 (2007). https://doi.org/10.1210/jc.2007-0298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. N.G. Forouhi, J. Luan, A. Cooper, B.J. Boucher, N.J. Wareham, Baseline serum 25-hydroxy vitamin D is predictive of future glycemic status and insulin resistance: the Medical Research Council Ely Prospective Study 1990–2000. Diabetes 57, 2619–2625 (2008). https://doi.org/10.2337/db08-0593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. T.J. Wang, M.J. Pencina, S.L. Booth, P.F. Jacques, E. Ingelsson, K. Lanier, E.J. Benjamin, R.B. D’Agostino, M. Wolf, R.S. Vasan, Vitamin D deficiency and risk of cardiovascular disease. Circulation 117, 503–511 (2008). https://doi.org/10.1161/CIRCULATIONAHA.107.706127

    Article  CAS  PubMed  Google Scholar 

  8. R. Illescas-Montes, L. Melguizo-Rodríguez, C. Ruiz, V.J. Costela-Ruiz, Vitamin D and autoimmune diseases. Life Sci. 233, 116744 (2019). https://doi.org/10.1016/j.lfs.2019.116744

    Article  CAS  PubMed  Google Scholar 

  9. I.S. Wicherts, N.M. van Schoor, A.J. Boeke, M. Visser, D.J. Deeg, J. Smit, D.L. Knol, P. Lips, Vitamin D status predicts physical performance and its decline in older persons. J. Clin. Endocrinol. Metab. 92, 2058–2065 (2007). https://doi.org/10.1210/jc.2006-1525

    Article  CAS  PubMed  Google Scholar 

  10. A. Barbonetti, A. Sperandio, A. Micillo, S. D’Andrea, F. Pacca, G. Felzani, S. Francavilla, F. Francavilla, Independent association of Vitamin D with physical function in people with chronic spinal cord injury. Arch. Phys. Med. Rehabil. 97, 726–732 (2016). https://doi.org/10.1016/j.apmr.2016.01.002

    Article  PubMed  Google Scholar 

  11. A. Barbonetti, S. D’Andrea, A. Martorella, G. Felzani, S. Francavilla, F. Francavilla, Low vitamin D levels are independent predictors of 1-year worsening in physical function in people with chronic spinal cord injury: a longitudinal study. Spinal Cord 5, 494–501 (2018). https://doi.org/10.1038/s41393-017-0058-7

    Article  Google Scholar 

  12. T. Haykal, V. Samji, Y. Zayed, I. Gakhal, H. Dhillo, B. Kheir, J. Kerbag, V. Veerapanen, M. Obeid, R. Danish, G. Bachuwa, The role of vitamin D supplementation for primary prevention of cancer: meta-analysis of randomized controlled trials. J. Community Hosp. Intern. Med. Perspect. 9, 480–488 (2019). https://doi.org/10.1080/20009666.2019.1701839

    Article  PubMed  PubMed Central  Google Scholar 

  13. Y. Wang, J. Zhu, H.F. DeLuca, Where is the vitamin D receptor? Arch. Biochem. Biophys. 523, 123–133 (2012). https://doi.org/10.1016/j.abb.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  14. M. Blomberg Jensen, J.E. Nielsen, A. Jørgensen, E. Rajpert-De Meyts, D.M. Kristensen, N. Jørgensen, N.E. Skakkebaek, A. Juul, H. Leffers, Vitamin D receptor and vitamin D metabolizing enzymes are expressed in the human male reproductive tract. Hum. Reprod. 25, 1303–1311 (2010). https://doi.org/10.1093/humrep/deq024

    Article  CAS  PubMed  Google Scholar 

  15. J.B. Cheng, M.A. Levine, N.H. Bell, D.J. Mangelsdorf, D.W. Russell, Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc. Natl Acad. Sci. USA 101, 7711–7715 (2004). https://doi.org/10.1073/pnas.0402490101

    Article  CAS  PubMed  Google Scholar 

  16. C. Foresta, G. Strapazzon, L. De Toni, L. Perilli, A. Di Mambro, B. Muciaccia, L. Sartori, R. Selice, Bone mineral density and testicular failure: evidence for a role of vitamin D 25-hydroxylase in human testis. J. Clin. Endocrinol. Metab. 96, E646–E652 (2011). https://doi.org/10.1210/jc.2010-1628

    Article  CAS  PubMed  Google Scholar 

  17. C. Foresta, R. Selice, A. Di Mambro, G. Strapazzon, Testiculopathy and vitamin D insufficiency. Lancet 376, 1301 (2010). https://doi.org/10.1016/S0140-6736(10)61916-2

    Article  PubMed  Google Scholar 

  18. R. Bouillon, G. Carmeliet, L. Verlinden, E. van Etten, A. Verstuyf, H.F. Luderer, L. Lieben, C. Mathieu, M. Demay, Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr. Rev. 29, 726–776 (2008). https://doi.org/10.1210/er.2008-0004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D. Hofer, J. Münzker, V. Schwetz, M. Ulbing, K. Hutz, P. Stiegler, R. Zigeuner, T.R. Pieber, H. Müller, B. Obermayer-Pietsch, Testicular synthesis and vitamin D action. J. Clin. Endocrinol. Metab. 99, 3766–3767 (2014). https://doi.org/10.1210/jc.20141690

    Article  CAS  PubMed  Google Scholar 

  20. E. Wehr, S. Pilz, B.O. Boehm, W. März, B. Obermayer-Pietsch, Association of vitamin D status with serum androgen levels in men. Clin. Endocrinol. 73, 243–248 (2010). https://doi.org/10.1111/j.1365-2265.2009.03777.x

    Article  CAS  Google Scholar 

  21. D.M. Lee, A. Tajar, S.R. Pye, S. Boonen, D. Vanderschueren, R. Bouillon, T.W. O’Neill, G. Bartfai, F.F. Casanueva, J.D. Finn, G. Forti, A. Giwercman, T.S. Han, I.T. Huhtaniemi, K. Kula, M.E.J. Lean, N. Pendleton, M. Punab, F.C.W. Wu, Association of hypogonadism with vitamin D status: the European Male Ageing Study. Eur. J. Endocrinol. 166, 77–85 (2012). https://doi.org/10.1530/EJE-11-0743

    Article  CAS  PubMed  Google Scholar 

  22. K. Nimptsch, E.A. Platz, W.C. Willett, E. Giovannucci, Association between plasma 25-OH vitamin D and testosterone levels in men. Clin. Endocrinol. 77, 106–112 (2012). https://doi.org/10.1111/j.1365-2265.2012.04332.x

    Article  CAS  Google Scholar 

  23. K.Y. Chin, S. Ima-Nirwana, W.Z. Wan Ngah, Vitamin D is significantly associated with total testosterone and sex hormone-binding globulin in Malaysian men. Aging Male 18, 175–179 (2015). https://doi.org/10.3109/13685538.2015.1034686

    Article  CAS  PubMed  Google Scholar 

  24. A. Ferlin, R. Selice, A. Di Mambro, M. Ghezzi, A. Di Nisio, N. Caretta, C. Foresta, Role of vitamin D levels and vitamin D supplementation on bone mineral density in Klinefelter syndrome. Osteoporos. Int. 26, 2193–2202 (2015). https://doi.org/10.1007/s00198015-3136-8

    Article  CAS  PubMed  Google Scholar 

  25. L. Laczmanski, F. Lwow, M. Mossakowska, M. Puzianowska-Kuznicka, M. Szwed, K. Kolackov, B. Krzyzanowska-Swiniarska, E. Bar-Andziak, J. Chudek, N. Sloka, Association between vitamin D concentration and levels of sex hormones in an elderly Polish population with different genotypes of VDR polymorphisms (rs10735810, rs1544410, rs7975232, rs731236). Gene 559, 73–76 (2015). https://doi.org/10.1016/j.gene.2015.01.022

    Article  CAS  PubMed  Google Scholar 

  26. Y.J. Tak, J.G. Lee, Y.J. Kim, N.C. Park, S.S. Kim, S. Lee, B.M. Cho, E.H. Kong, D.W. Jung, Y.H. Yi, Serum 25-hydroxyvitamin D levels and testosterone deficiency in middle-aged Korean men: a cross-sectional study. Asian J. Androl. 17, 324–328 (2015). https://doi.org/10.4103/1008-682X.142137

    Article  CAS  PubMed  Google Scholar 

  27. N. Wang, B. Han, Q. Li, Y. Chen, Y. Chen, F. Xia, D. Lin, M.D. Jensen, Y. Lu, Vitamin D is associated with testosterone and hypogonadism in Chinese men: Results from a cross-sectional SPECT-China study. Reprod. Biol. Endocrinol. 13, 74 (2015). https://doi.org/10.1186/s12958-015-0068-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. G.M. Anic, D. Albanes, S. Rohrmann, N. Kanarek, W.G. Nelson, G. Bradwin, N. Rifai, K.A. McGlynn, E.A. Platz, A.M. Mondul, Association between serum 25-hydroxyvitamin D and serum sex steroid hormones among men in NHANES. Clin. Endocrinol. 85, 258–266 (2016). https://doi.org/10.1111/cen.13062

    Article  CAS  Google Scholar 

  29. A. Barbonetti, M.R. Vassallo, G. Felzani, S. Francavilla, F. Francavilla, Association between 25(OH)-vitamin D and testosterone levels: Evidence from men with chronic spinal cord injury. J. Spinal Cord Med. 39, 246–252 (2016). https://doi.org/10.1179/2045772315Y.0000000050

    Article  PubMed  PubMed Central  Google Scholar 

  30. R. Rafiq, N.M. van Schoor, E. Sohl, M.C. Zillikens, M.M. Oosterwerff, L. Schaap, P. Lips, R.T. de Jongh, Associations of vitamin D status and vitamin D-related polymorphisms with sex hormones in older men. J. Steroid Biochem. Mol. Biol. 164, 11–17 (2016). https://doi.org/10.1016/j.jsbmb.2015.11.013

    Article  CAS  PubMed  Google Scholar 

  31. S.G. Park, J.K. Yeo, D.Y. Cho, M.G. Park, Impact of metabolic status on the association of serum vitamin D with hypogonadism and lower urinary tract symptoms/benign prostatic hyperplasia. Aging Male 21, 55–59 (2018). https://doi.org/10.1080/13685538.2017.1311857

    Article  CAS  PubMed  Google Scholar 

  32. G. Tirabassi, M. Sudano, G. Salvio, M. Cutini, G. Muscogiuri, G. Corona, G. Balercia, Vitamin D and male sexual function: a transversal and longitudinal study. Int. J. Endocrinol. 3720813 (2018). https://doi.org/10.1155/2018/3720813

  33. L. Ceglia, G.R. Chiu, S.S. Harris, A.B. Araujo, Serum 25-hydroxyvitamin D concentration and physical function in adult men. Clin. Endocrinol. 74, 370–376 (2011). https://doi.org/10.1111/j.1365-2265.2010.03926.x

    Article  CAS  Google Scholar 

  34. C.H. Ramlau-Hansen, U.K. Moeller, J.P. Bonde, J. Olsen, A.M. Thulstrup, Are serum levels of vitamin D associated with semen quality? Results from a cross-sectional study in young healthy men. Fertil. Steril. 95, 1000–1004 (2011). https://doi.org/10.1016/j.fertnstert.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  35. A.O. Hammoud, A.W. Meikle, C.M. Peterson, J. Stanford, M. Gibson, D.T. Carrell, Association of 25-hydroxy-vitamin D levels with semen and hormonal parameters. Asian J. Androl. 14, 855–859 (2012). https://doi.org/10.1038/aja.2012.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. R. Jorde, G. Grimnes, M.S. Hutchinson, M. Kjærgaard, E. Kamycheva, J. Svartberg, Supplementation with vitamin D does not increase serum testosterone levels in healthy males. Horm. Metab. Res. 45, 675–681 (2013). https://doi.org/10.1055/s-0033-1345139

    Article  CAS  PubMed  Google Scholar 

  37. E. Lerchbaum, S. Pilz, C. Trummer, T. Rabe, M. Schenk, A.C. Heijboer, B. Obermayer-Pietsch, Serum vitamin D levels and hypogonadism in men. Andrology 2, 748–754 (2014). https://doi.org/10.1111/j.2047-2927.2014.00247.x

    Article  CAS  PubMed  Google Scholar 

  38. M. Blomberg Jensen, J. Gerner Lawaetz, A.M. Andersson, J.H. Petersen, L. Nordkap, A.K. Bang, P. Ekbom, U.N. Joensen, L. Prætorius, P. Lundstrøm, V.H. Boujida, B. Lanske, A. Juul, N. Jørgensen, Vitamin D deficiency and low ionized calcium are linked with semen quality and sex steroid levels in infertile men. Hum. Reprod. 31, 1875–1885 (2016). https://doi.org/10.1093/humrep/dew152

    Article  CAS  PubMed  Google Scholar 

  39. S. Abbasihormozi, A. Kouhkan, A.R. Alizadeh, A.H. Shahverdi, M.H. Nasr-Esfahani, M.A. Sadighi Gilani, R. Salman Yazdi, A. Matinibehzad, Z. Zolfaghari, Association of vitamin D status with semen quality and reproductive hormones in Iranian subfertile men. Andrology 5, 113–118 (2017). https://doi.org/10.1111/andr.12280

    Article  CAS  PubMed  Google Scholar 

  40. M.Y. Sim, S.H. Kim, K.M. Kim, Seasonal variations and correlations between Vitamin D and total testosterone levels. Korean J. Fam. Med. 38, 270–275 (2017). https://doi.org/10.4082/kjfm.2017.38.5.270

    Article  PubMed  PubMed Central  Google Scholar 

  41. D. Zhao, P. Ouyang, I.H. de Boer, P.L. Lutsey, Y.M. Farag, E. Guallar, D.S. Siscovick, W.S. Post, R.R. Kalyani, K.L. Billups, E.D. Michos, Serum vitamin D and sex hormones levels in men and women: The Multi-Ethnic Study of Atherosclerosis (MESA). Maturitas 96, 95–102 (2017). https://doi.org/10.1016/j.maturitas.2016.11.017

    Article  CAS  PubMed  Google Scholar 

  42. A. Rudnicka, E. Adoamnei, J.A. Noguera-Velasco, J. Vioque, F. Cañizares-Hernández, J. Mendiola, N. Jørgensen, J.E. Chavarro, S.H. Swan, A.M. Torres-Cantero, Vitamin D status is not associated with reproductive parameters in young Spanish men. Andrology 8, 323–331 (2020). https://doi.org/10.1111/andr.12690

    Article  CAS  PubMed  Google Scholar 

  43. L. Shamseer, D. Moher, M. Clarke, D. Ghersi, A. Liberati, M. Petticrew, P. Shekelle, L.A. Stewart, Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 349, g7647 (2015). https://doi.org/10.1136/bmj.g7647

    Article  Google Scholar 

  44. M.F. Holick, N.C. Binkley, H.A. Bischoff-Ferrari, C.M. Gordon, D.A. Hanley, R.P. Heaney, M.H. Murad, C.M. Weaver, Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96, 1911–1930 (2011). https://doi.org/10.1210/jc.2011-0385

    Article  CAS  PubMed  Google Scholar 

  45. M. Bland, Estimating mean and standard deviation from the sample size, three quartiles, minimum, and maximum estimating mean and standard deviation from the sample size, three quartiles, minimum, and maximum. Int. J. Stat. Med. Res. 4, 57–64 (2015). https://doi.org/10.6000/1929-6029.2015.04.01.6

    Article  Google Scholar 

  46. J.J. Deeks, J. Dinnes, R. D’Amico, A.J. Sowden, C. Sakarovitch, F. Song, M. Petticrew, D.G. Altman, Evaluating non randomized intervention studies. Health Technol. Assess 7, 1–173 (2003). https://doi.org/10.3310/hta7270

    Article  Google Scholar 

  47. J.P. Higgins, S.G. Thompson, J.J. Deeks, D.G. Altman, Measuring inconsistency in meta-analyses. BMJ 32, 557–560 (2003). https://doi.org/10.1136/bmj.327.7414.557

    Article  Google Scholar 

  48. A. Barbonetti, A. Martorella, E. Minaldi, S. D’Andrea, D. Bardhi, C. Castellini, F. Francavilla, S. Francavilla, Testicular cancer in infertile men with and without testicular microlithiasis: a systematic review and meta-analysis of case-control studies. Front. Endocrinol. 10, 164 (2019). https://doi.org/10.3389/fendo.2019.00164

    Article  Google Scholar 

  49. S. D’Andrea, F. Pallotti, G. Senofonte, C. Castellini, D. Paoli, F. Lombardo, A. Lenzi, S. Francavilla, F. Francavilla, A. Barbonetti, Polymorphic cytosine-adenine-guanine repeat length of androgen receptor gene and gender incongruence in trans women: a systematic review and meta-analysis of case-control studies. J. Sex. Med. 17, 543–550 (2020). https://doi.org/10.1016/j.jsxm.2019.12.010

    Article  CAS  PubMed  Google Scholar 

  50. E. Minaldi, S. D’Andrea, C. Castellini, A. Martorella, F. Francavilla, S. Francavilla, A. Barbonetti, Thyroid autoimmunity and risk of post-partum depression: a systematic review and meta-analysis of longitudinal studies. J. Endocrinol. Invest. 43, 271–277 (2020). https://doi.org/10.1007/s40618-019-01120-8

    Article  CAS  PubMed  Google Scholar 

  51. J.A. Sterne, M. Egger, Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J. Clin. Epidemiol. 54, 1046–1055 (2001). https://doi.org/10.1016/S0895-4356(01)00377-8

    Article  CAS  PubMed  Google Scholar 

  52. S. Duval, R. Tweedie, Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000). https://doi.org/10.1111/j.0006-341X.2000.00455.x

    Article  CAS  Google Scholar 

  53. J. MacLaughlin, M.F. Holick, Aging decreases the capacity of human skin to produce vitamin D3. J. Endocrinol. Invest. 76, 1536–1538 (1985). https://doi.org/10.1172/JCI112134

    Article  CAS  Google Scholar 

  54. J.M. Zmuda, J.A. Cauley, A. Kriska, N.W. Glynn, J.P. Gutai, L.H. Kuller, Longitudinal relation between endogenous testosterone and cardiovascular disease risk factors in middle-aged men. A 13-year follow-up of former multiple risk factor intervention trial participants. Am. J. Epidemiol. 146, 609–617 (1997). https://doi.org/10.1093/oxfordjournals.aje.a009326

    Article  CAS  PubMed  Google Scholar 

  55. S.M. Harman, E.J. Metter, J.D. Tobin, J. Pearson, M.R. Blackman, Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J. Clin. Endocrinol. Metab. 86, 724–731 (2001). https://doi.org/10.1210/jcem.86.2.7219

    Article  CAS  PubMed  Google Scholar 

  56. H.A. Feldman, C. Longcope, C.A. Derby, C.B. Johannes, A.B. Araujo, A.D. Coviello, W.J. Bremner, J.B. McKinlay, Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J. Clin. Endocrinol. Metab. 87, 589–598 (2002). https://doi.org/10.1210/jcem.87.2.8201

    Article  CAS  PubMed  Google Scholar 

  57. J.M. Kaufman, A. Vermeulen, The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr. Rev. 26, 833–876 (2005). https://doi.org/10.1210/er.20040013

    Article  CAS  PubMed  Google Scholar 

  58. E.M. Camacho, I.T. Huhtaniemi, T.W. O’Neill, J.D. Finn, S.R. Pye, D.M. Lee, A. Tajar, G. Bartfai, S. Boonen, F.F. Casanueva, G. Forti, A. Giwercman, T.S. Han, K. Kula, B. Keevil, M.E. Lean, N. Pendleton, M. Punab, D. Vanderschueren, F.C.W. Wu, Age-associated changes in hypothalamic-pituitary-testicular function in middle-aged and older men are modified by weight change and lifestyle factors: longitudinal results from the European Male Ageing Study. Eur. J. Endocrinol. 168, 445–455 (2013). https://doi.org/10.1530/EJE-12-0890

    Article  CAS  PubMed  Google Scholar 

  59. A. Karagiannis, F. Harsoulis, Gonadal dysfunction in systemic diseases. Eur. J. Endocrinol. 152, 501–513 (2005). https://doi.org/10.1530/eje.1.01886

    Article  CAS  PubMed  Google Scholar 

  60. T. van der Poll, J.A. Romijn, E. Endert, H.P. Sauerwein, Effects of tumor necrosis factor on the hypothalamic-pituitary-testicular axis in healthy men. Metabolism 42, 303–307 (1993). https://doi.org/10.1016/0026-0495(93)90078-3

    Article  PubMed  Google Scholar 

  61. C.Y. Hong, J.H. Park, R.S. Ahn, S.Y. Im, H.S. Choi, J. Soh, S.H. Mellon, K. Lee, Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol. Cell. Biol. 24, 2593–25604 (2004). https://doi.org/10.1128/MCB.24.7.2593-2604.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. J. Veldhuis, R. Yang, F. Roelfsema, P. Takahashi, Proinflammatory cytokine infusion attenuates LH’s feedforward on testosterone secretion: modulation by age. J. Clin. Endocrinol. Metab. 101, 539–549 (2016). https://doi.org/10.1210/jc.2015-3611

    Article  CAS  PubMed  Google Scholar 

  63. R. Haring, S.E. Baumeister, H. Völzke, M. Dörr, T. Kocher, M. Nauck, H. Wallaschofski, Prospective inverse associations of sex hormone concentrations in men with biomarkers of inflammation and oxidative stress. J. Androl. 33, 944–950 (2012). https://doi.org/10.2164/jandrol.111.015065

    Article  CAS  PubMed  Google Scholar 

  64. T. Ahern, A. Swiecicka, R.J. Eendebak, E.L. Carter, J.D. Finn, S.R. Pye, T.W. O’Neill, L. Antonio, B. Keevil, G. Bartfai, F.F. Casanueva, G. Forti, A. Giwercman, T.S. Han, K. Kula, M.E.J. Lean, N. Pendleton, M. Punab, G. Rastrelli, M.K. Rutter, D. Vanderschueren, I.T. Huhtaniemi, F.C.W. Wu, Natural history, risk factors and clinical features of primary hypogonadism in ageing men: longitudinal data from the European Male Ageing Study. Clin. Endocrinol. 85, 891–901 (2016). https://doi.org/10.1111/cen.13152

    Article  CAS  Google Scholar 

  65. M. Pereira-Santos, P.R. Costa, A.M. Assis, C.A. Santos, D.B. Santos, Obesity and vitamin D deficiency: a systematic review and meta-analysis. Obes. Rev. 16, 341–349 (2015). https://doi.org/10.1111/obr.12239

    Article  CAS  PubMed  Google Scholar 

  66. A.G. Need, H.A. Morris, M. Horowitz, C. Nordin, Effects of skin thickness, age, body fat, and sunlight on serum 25-hydroxyvitamin D. Am. J. Clin. Nutr. 58, 882–885 (1993). https://doi.org/10.1093/ajcn/58.6.882

    Article  CAS  Google Scholar 

  67. J. Wortsman, L.Y. Matsuoka, T.C. Chen, Z. Lu, M.F. Holick, Decreased bioavailability of vitamin D in obesity. Am. J. Clin. Nutr. 72, 690–693 (2000). https://doi.org/10.1093/ajcn/72.3.690

    Article  CAS  PubMed  Google Scholar 

  68. AndreaDi Nisio, LucaDe Toni, Iva Sabovic, MariaSanta Rocca, VincenzoDe Filippis, Giuseppe Opocher, Bruno Azzena, Roberto Vettor, Mario Plebani, Carlo Foresta, Impaired release of Vitamin D in dysfunctional adipose tissue: new cues on Vitamin D supplementation in obesity. J. Clin. Endocrinol. Metab. 102, 2564–2574 (2017). https://doi.org/10.1210/jc.2016-3591

    Article  PubMed  Google Scholar 

  69. J.E. Compston, S. Vedi, J.E. Ledger, A. Webb, J.C. Gazet, T.R. Pilkington, Vitamin D status and bone histomorphometry in gross obesity. Am. J. Clin. Nutr. 34, 2359–2363 (1981). https://doi.org/10.1093/ajcn/34.11.2359

    Article  CAS  PubMed  Google Scholar 

  70. E. Hyppönen, C. Power, Hypovitaminosis D in British adults at age 45 y: nationwide cohort study of dietary and lifestyle pre-dictors. Am. J. Clin. Nutr. 85, 860–868 (2007). https://doi.org/10.1093/ajcn/85.3.860

    Article  PubMed  Google Scholar 

  71. S. Migliaccio, A. Di Nisio, C. Mele, L. Scappaticcio, S. Savastano, A. Colao, Obesity and hypovitaminosis D: Causality or casualty? Int. J. Obes. Suppl. 9, 20–31 (2019). https://doi.org/10.1038/s41367-019-0010-8

    Article  Google Scholar 

  72. G. Corona, G. Rastrelli, L. Vignozzi, E. Mannucci, M. Maggi, Testosterone, cardiovascular disease and the metabolic syndrome. Best Pract. Res. Clin. Endocrinol. Metab. 25, 337–353 (2011). https://doi.org/10.1016/j.beem.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  73. A. Di Nisio, I. Sabovic, L. De Toni, M. Santa Rocca, S. Dall’Acqua, B. Azzena, M. De Rocco Ponce, C. Foresta, Testosterone is sequestered in dysfunctional adipose tissue, modifying androgen-responsive genes. Int. J. Obes. 44, 1617–1625 (2020). https://doi.org/10.1038/s41366-020-0568-9

    Article  CAS  Google Scholar 

  74. G. Schneider, M.A. Kirschner, R. Berkowitz, N.H. Ertel, Increased estrogen production in obese men. J. Clin. Endocrinol. Metab. 48, 633–638 (1979). https://doi.org/10.1210/jcem-48-4-633

    Article  CAS  PubMed  Google Scholar 

  75. C.J. Bagatell, K.D. Dahl, W.J. Bremner, The direct pituitary effect of testosterone to inhibit gonadotropin secretion in men is partially mediated by aromatization to estradiol. J. Androl. 15, 15–21 (1994). https://doi.org/10.1002/j.1939-4640.1994.tb01674.x

    Article  CAS  PubMed  Google Scholar 

  76. V.A. Giagulli, J.M. Kaufman, A. Vermeulen, Pathogenesis of the decreased androgen levels in obese men. J. Clin. Endocrinol. Metab. 79, 997–1000 (1994). https://doi.org/10.1210/jcem.79.4.7962311

    Article  CAS  PubMed  Google Scholar 

  77. S. Bhasin, W.E. Taylor, R. Singh, J. Artaza, I. Sinha-Hikim, R. Jasuja, H. Choi, N.F. Gonzalez-Cadavid, The mechanisms of androgen effects on body composition: mesenchymal pluripotent cell as the target of androgen action. J. Gerontol. A Biol. Sci. Med. Sci. 58, M1103–M1110 (2003). https://doi.org/10.1093/gerona/58.12.M1103

    Article  PubMed  Google Scholar 

  78. D.E. Laaksonen, L. Niskanen, K. Punnonen, K. Nyyssönen, T.P. Tuomainen, V.P. Valkonen, R. Salonen, J.T. Salonen, Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men. Diabetes Care 27, 1036–1041 (2004). https://doi.org/10.2337/diacare.27.5.1036

    Article  CAS  PubMed  Google Scholar 

  79. L. Maïmoun, C. Fattal, C. Sultan, Bone remodeling and calcium homeostasis in patients with spinal cord injury: a review. Metabolism 60, 1655–1663 (2011). https://doi.org/10.1016/j.metabol.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  80. W.A. Bauman, M.F. Fountaine, A.M. Spungen, Age-related prevalence of low testosterone in men with spinal cord injury. J. Spinal Cord Med. 37, 32–39 (2014). https://doi.org/10.1179/2045772313Y.0000000122

    Article  PubMed  PubMed Central  Google Scholar 

  81. A. Barbonetti, M.R. Vassallo, F. Pacca, F. Cavallo, M. Costanzo, G. Felzani, S. Francavilla, F. Francavilla, Correlates of low testosterone in men with chronic spinal cord injury. Andrology 2, 721–728 (2014). https://doi.org/10.1111/j.2047-2927.2014.00235.x

    Article  CAS  PubMed  Google Scholar 

  82. A. Barbonetti, M.R.C. Vassallo, M. Cotugno, G. Felzani, S. Francavilla, F. Francavilla, Low testosterone and non-alcoholic fatty liver disease: Evidence for their independent association in men with chronic spinal cord injury. J. Spinal Cord Med. 39, 443–449 (2016). https://doi.org/10.1179/2045772314Y.0000000288

    Article  PubMed  PubMed Central  Google Scholar 

  83. S.D. Sullivan, M.S. Nash, E. Tefera, E. Tinsley, M.R. Blackman, S. Groah, Prevalence and etiology of hypogonadism in young men with chronic spinal cord injury: a cross-sectional analysis from two university-based rehabilitation centers. PM R 9, 751–760 (2017). https://doi.org/10.1016/j.pmrj.2016.11.005

    Article  PubMed  Google Scholar 

  84. W.A. Bauman, Y.G. Zhong, E. Schwartz, Vitamin D deficiency in veterans with chronic spinal cord injury. Metabolism 44, 1612–1616 (1995). https://doi.org/10.1016/00260495(95)90083-7

    Article  CAS  PubMed  Google Scholar 

  85. A. Barbonetti, S. D’Andrea, J. Samavat, A. Martorella, G. Felzani, S. Francavilla, M. Luconi, F. Francavilla, Can the positive association of osteocalcin with testosterone be unmasked when the preeminent hypothalamic-pituitary regulation of testosterone production is impaired? The model of spinal cord injury. J. Endocrinol. Invest. 42, 167–173 (2019). https://doi.org/10.1007/s40618-018-0897-x

    Article  CAS  PubMed  Google Scholar 

  86. S. Pilz, S. Frisch, H. Koertke, J. Kuhn, J. Dreier, B. Obermayer-Pietsch, E. Wehr, A. Zittermann, Effect of vitamin D supplementation on testosterone levels in men. Horm. Metab. Res. 43, 223–225 (2011). https://doi.org/10.1055/s-0030-1269854

    Article  CAS  PubMed  Google Scholar 

  87. O. Canguven, R.A. Talib, W. El Ansari, D.J. Yassin, A. Al Naimi, Vitamin D treatment improves levels of sexual hormones, metabolic parameters and erectile function in middle-aged vitamin D deficient men. Aging Male 20, 9–16 (2017). https://doi.org/10.1080/13685538.2016.1271783

    Article  CAS  PubMed  Google Scholar 

  88. E. Hosseini Marnani, M. Mollahosseini, A. Gheflati, A. Ghadiri-Anari, A. Nadjarzadeh, The effect of vitamin D supplementation on the androgenic profile in men: a systematic review and meta-analysis of clinical trials. Andrologia 51, e13343 (2019). https://doi.org/10.1111/and.13343

    Article  CAS  PubMed  Google Scholar 

  89. M.J. Bolland, A.B. Grey, R.W. Ames, B.H. Mason, A.M. Horne, G.D. Gamble, I.R. Reid, The effects of seasonal variation of 25-hydroxyvitamin D and fat mass on a diagnosis of vitamin D sufficiency. Am. J. Clin. Nutr. 86, 959–964 (2007). https://doi.org/10.1093/ajcn/86.4.959

    Article  CAS  PubMed  Google Scholar 

  90. R. Rosecrans, J.C. Dohnal, Seasonal vitamin D changes and the impact on health risk assessment. Clin. Biochem. 47, 670–672 (2014). https://doi.org/10.1016/j.clinbiochem.2014.02.004

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Ministero dell’Istruzione, Università e Ricerca (MIUR), PRIN 2017.

Author contributions

S.D.A. systematic literature search, evaluation of selected studies for eligibility, quality assessment of the studies; A.M. systematic literature search, evaluation of selected studies for eligibility, quality assessment of the studies; F.C. evaluation of selected studies for eligibility, data extraction; C.C. data extraction, data analysis; E.M. systematic literature search; M.T. data extraction; A.P. data extraction; S.F. quality assessment of the studies, revising the article for intellectual content; F.F. revising the article for intellectual content; A.B. conception and design, data analysis, drafting the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Barbonetti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Andrea, S., Martorella, A., Coccia, F. et al. Relationship of Vitamin D status with testosterone levels: a systematic review and meta-analysis. Endocrine 72, 49–61 (2021). https://doi.org/10.1007/s12020-020-02482-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02482-3

Keywords

Navigation