Skip to main content

Advertisement

Log in

An update on familial nonmedullary thyroid cancer

  • Mini Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Familial nonmedullary thyroid cancer (FNMTC) constitutes 3–9% of all thyroid cancer cases. FNMTC is divided into two groups: syndromic and nonsyndromic. Nonsyndromic FNMTC is more common as compared with syndromic FNMTC. In syndromic FNMTC, patients are at risk of nonmedullary thyroid cancer (NMTC) and other tumors, and the susceptibility genes are known. In nonsyndromic FNMTC, NMTC is the major feature of the disease and occurs in isolation with an autosomal dominant pattern of inheritance and variable penetrance. New data have emerged on the genetics, clinical characteristics, and outcomes of patients with FNMTC that may have clinical relevance in the management of patients. In this review, we focus on newly characterized syndromic FNMTC entities, criteria for screening and surveillance of nonsyndromic FNMTC, and the classification of nonsyndromic FNMTC as well as the genetic background and heterogeneity of nonsyndromic FNMTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Moses, J. Weng, E. Kebebew, Prevalence, clinicopathologic features, and somatic genetic mutation profile in familial versus sporadic nonmedullary thyroid cancer. Thyroid 21, 367–371 (2011)

    PubMed  PubMed Central  Google Scholar 

  2. T.J. Sinclair, E. Kebebew, Familial nonmedullary thyroid cancer. Adv. Treat. Manag. Surg. Endocrinol. Ch. 4, 35–48 (2019)

  3. L. Lamartina, G. Grani, C. Durante et al. Screening for differentiated thyroid cancer in selected populations. Lancet Diabetes Endocrinol. 8, 81–88 (2020)

    PubMed  Google Scholar 

  4. M.R. Vriens, I. Suh, W. Moses et al. Clinical features and genetic predisposition to hereditary nonmedullary thyroid cancer. Thyroid 19, 1343–1349 (2009)

    CAS  PubMed  Google Scholar 

  5. N.D. Charkes, On the prevalence of familial nonmedullary thyroid cancer in multiply affected kindreds. Thyroid 16, 181–186 (2006)

    PubMed  Google Scholar 

  6. J. Klubo-Gwiezdzinska, L. Yang, R. Merkel et al. Results of screening in familial non-medullary thyroid cancer. Thyroid 27, 1017–1024 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. B. Haugen, E. Alexander, K. Bible et al. Results of screening in familial non-medullary thyroid cancer. Thyroid 26, 1–133 (2016)

    PubMed  PubMed Central  Google Scholar 

  8. S. Peiling Yang, J. Ngeow, Familial non-medullary thyroid cancer: unraveling the genetic maze. Endocr. Relat. Cancer 23, R577–R595 (2016)

    PubMed  Google Scholar 

  9. A. Rios, J.M. Rodriguez, D. Navas et al. Family screening in familial papillary carcinoma: the early detection of thyroid disease. Ann. Surg. Oncol. 23, 2564–2570 (2016)

    PubMed  Google Scholar 

  10. S.M. Sadowski, M. He, K. Gesuwan et al. Prospective screening in familial nonmedullary thyroid cancer. Surgery 154, 1194–1198 (2013)

    PubMed  Google Scholar 

  11. G. Cross, F. Pitoia, H. Suarez et al. High prevalence of thyroid disorders in relatives of patients with familial papillary thyroid cancer. Med. (B Aires) 70, 139–142 (2010)

    Google Scholar 

  12. T.J. Musholt, P.B. Musholt, T. Petrich et al. Familial papillary thyroid carcinoma: genetics, criteria for diagnosis, clinical features, and surgical treatment. World J. Surg. 24, 1409–1417 (2000)

    CAS  PubMed  Google Scholar 

  13. C. Stephenson, O. Norlen, A. Shun et al. Papillary thyroid cancer in childhood: is parental screening helpful? ANZ J. Surg. 87, 615–618 (2017)

    PubMed  Google Scholar 

  14. P.W. Rosario, A.F. Mineiro Filho, B.S. Prates et al. Ultrasonographic screening for thyroid cancer in siblings of patients with apparently sporadic papillary carcinoma. Thyroid 22, 805–808 (2012)

    PubMed  Google Scholar 

  15. National Institutes of Health, National Library of Medicine. DICER1 Syndrome-Genetics Home References. vol 2019. https://ghr.nlm.nih.gov/condition/dicer1-syndrome

  16. T. Rio Frio, A. Bahubeshi, C. Kanellopoulou et al. DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli-Leydig cell tumors. JAMA 305, 68–77 (2011)

    CAS  PubMed  Google Scholar 

  17. L. de Kock, N. Sabbaghian, D.B. Soglio et al. Exploring the association Between DICER1 mutations and differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab. 99, E1072–E1077 (2014)

    PubMed  Google Scholar 

  18. M.M. Rutter, P. Jha, K.A. Schultz et al. DICER1 mutations and differentiated thyroid carcinoma: evidence of a direct association. J. Clin. Endocrinol. Metab. 101, 1–5 (2016)

    CAS  PubMed  Google Scholar 

  19. L. Doros, K.A. Schultz, D.R. Stewart et al. DICER1-related disorders. In: M.P. Adam, H.H. Ardinger, R.A. Pagon, S.E. Wallace, L.J.H. Bean, K. Stephens, A. Amemiya, eds. (GeneReviews®, Seattle, WA, 1993)

  20. Y.J. Park, H.Y. Ahn, H.S. Choi et al. The long-term outcomes of the second generation of familial nonmedullary thyroid carcinoma are more aggressive than sporadic cases. Thyroid 22, 356–362 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. O. Alsanea, N. Wada, K. Ain et al. Is familial non-medullary thyroid carcinoma more aggressive than sporadic thyroid cancer? A Multicent. Ser. Surg. 128, 1043–1050 (2000). discussion 1050-1

    CAS  Google Scholar 

  22. S. Uchino, S. Noguchi, H. Kawamoto et al. Familial nonmedullary thyroid carcinoma characterized by multifocality and a high recurrence rate in a large study population. World J. Surg. 26, 897–902 (2002)

    PubMed  Google Scholar 

  23. H. Mazeh, J. Benavidez, J.L. Poehls et al. In patients with thyroid cancer of follicular cell origin, a family history of nonmedullary thyroid cancer in one first-degree relative is associated with more aggressive disease. Thyroid 22, 3–8 (2012)

    PubMed  Google Scholar 

  24. L. Jiwang, L. Zhendong, L. Shuchun et al. Clinicopathologic characteristics of familial versus sporadic papillary thyroid carcinoma. Acta Otorhinolaryngol. Ital. 35, 234–242 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. C. Leux, T. Truong, C. Petit et al. Family history of malignant and benign thyroid diseases and risk of thyroid cancer: a population-based case-control study in New Caledonia. Cancer Causes Control 23, 745–755 (2012)

    PubMed  Google Scholar 

  26. F. Pitoia, G. Cross, M.E. Salvai et al. Patients with familial non-medullary thyroid cancer have an outcome similar to that of patients with sporadic papillary thyroid tumors. Arq. Bras. Endocrinol. Metab. 55, 219–223 (2011)

    Google Scholar 

  27. M. Tavarelli, M. Russo, R. Terranova et al. Familial non-medullary thyroid cancer represents an independent risk factor for increased cancer aggressiveness: a retrospective analysis of 74 families. Front Endocrinol. 6, 117 (2015)

    Google Scholar 

  28. Y.M. Lee, J.H. Yoon, O. Yi et al. Familial history of non-medullary thyroid cancer is an independent prognostic factor for tumor recurrence in younger patients with conventional papillary thyroid carcinoma. J. Surg. Oncol. 109, 168–173 (2014)

    PubMed  Google Scholar 

  29. Y. Ito, K. Kakudo, M. Hirokawa et al. Biological behavior and prognosis of familial papillary thyroid carcinoma. Surgery 145, 100–105 (2009)

    PubMed  Google Scholar 

  30. E. Robenshtok, G. Tzvetov, S. Grozinsky-Glasberg et al. Clinical characteristics and outcome of familial nonmedullary thyroid cancer: a retrospective controlled study. Thyroid 21, 43–48 (2011)

    PubMed  Google Scholar 

  31. T.J. McDonald, A.A. Driedger, B.M. Garcia et al. Familial papillary thyroid carcinoma: a retrospective analysis. J. Oncol. 2011, 948786 (2011)

    PubMed  PubMed Central  Google Scholar 

  32. E.L. Maxwell, F.T. Hall, J.L. Freeman, Familial non-medullary thyroid cancer: a matched-case control study. Laryngoscope 114, 2182–2186 (2004)

    PubMed  Google Scholar 

  33. A.E. Pinto, G.L. Silva, R. Henrique et al. Familial vs sporadic papillary thyroid carcinoma: a matched-case comparative study showing similar clinical/prognostic behaviour. Eur. J. Endocrinol. 170, 321–327 (2014)

    CAS  PubMed  Google Scholar 

  34. M. Capezzone, S. Marchisotta, S. Cantara et al. Familial non-medullary thyroid carcinoma displays the features of clinical anticipation suggestive of a distinct biological entity. Endocr. Relat. Cancer 15, 1075–1081 (2008)

    CAS  PubMed  Google Scholar 

  35. X. Wang, W. Cheng, J. Li, Endocrine tumours: familial nonmedullary thyroid carcinoma is a more aggressive disease: a systematic review and meta-analysis. Eur. J. Endocrinol 172, R253–R262 (2015)

    CAS  PubMed  Google Scholar 

  36. M. El Lakis, A. Giannakou, P.J. Nockel et al. Do patients with familial nonmedullary thyroid cancer present with more aggressive disease? Implications for initial surgical treatment. Surgery 165, 50–57 (2019)

    PubMed  Google Scholar 

  37. H. He, A. Bronisz, S. Liyanarachchi et al. SRGAP1 is a candidate gene for papillary thyroid carcinoma susceptibility. J. Clin. Endocrinol. Metab 98, E973–E980 (2013)

    PubMed  PubMed Central  Google Scholar 

  38. J. Tomsic, H. He, K. Akagi et al. A germline mutation in SRRM2, a splicing factor gene, is implicated in papillary thyroid carcinoma predisposition. Sci. Rep. 5, 10566 (2015)

    PubMed  PubMed Central  Google Scholar 

  39. S.K. Gara, L. Jia, M.J. Merino et al. Germline HABP2 mutation causing familial nonmedullary thyroid cancer. N. Engl. J. Med. 373, 448–455 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. R. de Randamie, G.A. Martos-Moreno, C. Lumbreras et al. Frequent and rare HABP2 variants are not associated with increased susceptibility to familial nonmedullary thyroid carcinoma in the Spanish Population. Horm. Res Paediatr. 89, 397–407 (2018)

    PubMed  Google Scholar 

  41. A. Kowalik, D. Gasior-Perczak, M. Gromek et al. The p.G534E variant of HABP2 is not associated with sporadic papillary thyroid carcinoma in a Polish population. Oncotarget 8, 58304–58308 (2017)

    PubMed  PubMed Central  Google Scholar 

  42. L.E.B. de Mello, A.N. Araujo, C.X. Alves et al. The G534E variant in HABP2 is not associated with increased risk of familial nonmedullary thyroid cancer in Brazilian Kindreds. Clin. Endocrinol. 87, 113–114 (2017)

    Google Scholar 

  43. M. Pinheiro, S.A. Drigo, R. Tonhosolo et al. HABP2 p.G534E variant in patients with family history of thyroid and breast cancer. Oncotarget 8, 40896–40905 (2017)

    PubMed  PubMed Central  Google Scholar 

  44. C. Colombo, M. Muzza, M.C. Proverbio et al. Segregation and expression analyses of hyaluronan-binding protein 2 (HABP2): insights from a large series of familial non-medullary thyroid cancers and literature review. Clin. Endocrinol. 86, 837–844 (2017)

    CAS  Google Scholar 

  45. S. Cantara, C. Marzocchi, M.G. Castagna et al. HABP2 G534E variation in familial non-medullary thyroid cancer: an Italian series. J. Endocrinol. Invest. 40, 557–560 (2017)

    CAS  PubMed  Google Scholar 

  46. A.L. Weeks, S.G. Wilson, L. Ward et al. HABP2 germline variants are uncommon in familial nonmedullary thyroid cancer. BMC Med. Genet. 17, 60 (2016)

    PubMed  PubMed Central  Google Scholar 

  47. T. Zhang, M. Xing, HABP2 G534E mutation in familial nonmedullary thyroid cancer. J. Natl. Cancer Inst. 108, djv415 (2016)

    PubMed  PubMed Central  Google Scholar 

  48. J. Tomsic, R. Fultz, S. Liyanarachchi et al. HABP2 G534E variant in papillary thyroid carcinoma. PLoS ONE 11, e0146315 (2016)

    PubMed  PubMed Central  Google Scholar 

  49. R. Sahasrabudhe, J. Stultz, J. Williamson et al. The HABP2 G534E variant is an unlikely cause of familial non-medullary thyroid cancer. J. Clin. Endocrinol. Metab. 10, 1098–1103 (2016)

    PubMed  Google Scholar 

  50. E.S. Ngan, B.H. Lang, T. Liu et al. A germline mutation (A339V) in thyroid transcription factor-1 (TITF-1/NKX2.1) in patients with multinodular goiter and papillary thyroid carcinoma. J. Natl. Cancer Inst. 101, 162–175 (2009)

    CAS  PubMed  Google Scholar 

  51. S. Cantara, S. Capuano, C. Formichi et al. Lack of germline A339V mutation in thyroid transcription factor-1 (TITF-1/NKX2.1) gene in familial papillary thyroid cancer. Thyroid Res. 3, 4 (2010)

    PubMed  PubMed Central  Google Scholar 

  52. Y. Wang, S. Liyanarachchi, K.E. Miller et al. Identification of rare variants predisposing to thyroid cancer. Thyroid 29, 946–955 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. F. Ye, H. Gao, L. Xiao et al. Whole exome and target sequencing identifies MAP2K5 as novel susceptibility gene for familial non-medullary thyroid carcinoma. Int. J. Cancer 144, 1321–1330 (2019)

    CAS  PubMed  Google Scholar 

  54. V. Cirello, C. Colombo, L. Persani et al. Absence of the MAP2K5 germline variants c.G961A and c.T1100C in a wide series of familial nonmedullary thyroid carcinoma Italian families. Int. J. Cancer 145, 600 (2019)

    CAS  PubMed  Google Scholar 

  55. A. Srivastava, A. Kumar, S. Giangiobbe, et al., Whole genome sequencing of familial non-medullary thyroid cancer identifies germline alterations in MAPK/ERK and PI3K/AKT signaling pathways. Biomolecules 9, 1–20, pii: E605 (2019). https://doi.org/10.3390/biom9100605

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Electron Kebebew.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No animal or human subjects issues to this review article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammar, S.A., Alobuia, W.M. & Kebebew, E. An update on familial nonmedullary thyroid cancer. Endocrine 68, 502–507 (2020). https://doi.org/10.1007/s12020-020-02250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02250-3

Keywords

Navigation