Skip to main content

Advertisement

Log in

Impact of acute-phase insulin secretion on glycemic variability in insulin-treated patients with type 2 diabetes

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Aims

The association between β-cell function and glycemic variability remains to be clarified in insulin-treated patients with type 2 diabetes. Therefore, the study sought to examine the association of various indices of β-cell function with glycemic variability in Chinese insulin-treated patients with type 2 diabetes.

Methods

Glycemic variability was assessed by the coefficient of variation (CV) of glucose levels with the use of continuous glucose monitoring (CGM). Basal β-cell function was evaluated by fasting C-peptide (FCP) and the homeostasis model assessment 2 for β-cell function (HOMA2-%β). Postload β-cell function was measured by 2-hour C-peptide (2hCP) and the acute C-peptide response (ACPR) to arginine.

Results

When a cutoff value of CV ≥ 36% was used to define unstable glucose, the multivariable-adjusted odds ratios for labile glycemic control were 0.34 (95% CI 0.18–0.64) for each 1 ng/mL increase in ACPR, 0.47 (95% CI 0.27–0.81) for each 1 ng/mL increase in FCP, 0.77 (95% CI 0.61–0.97) for each 1 ng/mL increase in 2hCP, and 1.00 (95% CI 0.98–1.01) for each 1% increase in HOMA2-%β. When we further adjusted for 2hCP and HOMA2-%β in the ACPR and FCP analyses, and adjusted for ACPR or FCP in the 2hCP analyses, only ACPR but not FCP or 2hPC remained to be a significant and inverse predictor for labile glycemic control.

Conclusions

ACPR evaluated by the arginine stimulation test may be superior to other commonly used β-cell function parameters to reflect glycemic fluctuation in insulin-treated patients with type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

2hCP:

2-hour C-peptide

2hPG:

2-hour plasma glucose

ACPR:

acute C-peptide response

AST:

arginine stimulation test

BMI:

body mass index

CGM:

continuous glucose monitoring

CV:

coefficient of variation

FCP:

fasting C-peptide

FPG:

fasting plasma glucose

HbA1c :

glycated hemoglobin A1c

HDL-c:

high-density lipoprotein cholesterol

HOMA2-%β:

homeostasis model assessment 2 for β-cell function

HOMA2-IR:

homeostasis model assessment 2 of insulin resistance

LDL-c:

low-density lipoprotein cholesterol

TC:

total cholesterol

TGs:

triglycerides.

References

  1. L. Monnier, E. Mas, C. Ginet, F. Michel, L. Villon, J.P. Cristol, C. Colette, Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295(14), 1681–1687 (2006). https://doi.org/10.1001/jama.295.14.1681

    Article  CAS  PubMed  Google Scholar 

  2. W. Xu, Y. Zhu, X. Yang, H. Deng, J. Yan, S. Lin, H. Yang, H. Chen, J. Weng, Glycemic variability is an important risk factor for cardiovascular autonomic neuropathy in newly diagnosed type 2 diabetic patients. Int. J. Cardiol. 215, 263–268 (2016). https://doi.org/10.1016/j.ijcard.2016.04.078

    Article  PubMed  Google Scholar 

  3. J. Lu, X. Ma, L. Zhang, Y. Mo, L. Ying, W. Lu, W. Zhu, Y. Bao, J. Zhou, Glycemic variability assessed by continuous glucose monitoring and the risk of diabetic retinopathy in latent autoimmune diabetes of the adult and type 2 diabetes. J. Diabetes Investig. 10(3), 753–759 (2019). https://doi.org/10.1111/jdi.12957

    Article  CAS  PubMed  Google Scholar 

  4. A. Akirov, T. Diker-Cohen, H. Masri-Iraqi, I. Shimon, High glucose variability increases mortality risk in hospitalized patients. J. Clin. Endocrinol. Metab. 102(7), 2230–2241 (2017). https://doi.org/10.1210/jc.2017-00450

    Article  PubMed  Google Scholar 

  5. J. Shen, Z. Chen, C. Chen, X. Zhu, Y. Han, Impact of incretin on early-phase insulin secretion and glucose excursion. Endocrine 44(2), 403–410 (2013). https://doi.org/10.1007/s12020-012-9867-9

    Article  CAS  PubMed  Google Scholar 

  6. J. Peng, J. Lu, X. Ma, L. Ying, W. Lu, W. Zhu, Y. Bao, J. Zhou, Breakfast replacement with a liquid formula improves glycemic variability in patients with type 2 diabetes: a randomized clinical trial. Br. J. Nutr. 1–25 (2018). https://doi.org/10.1017/S0007114518003628

  7. M. Kanat, A. Mari, L. Norton, D. Winnier, R.A. DeFronzo, C. Jenkinson, M.A. Abdul-Ghani, Distinct beta-cell defects in impaired fasting glucose and impaired glucose tolerance. Diabetes 61(2), 447–453 (2012). https://doi.org/10.2337/db11-0995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. K.D. Kohnert, P. Augstein, E. Zander, P. Heinke, K. Peterson, E.J. Freyse, R. Hovorka, E. Salzsieder, Glycemic variability correlates strongly with postprandial beta-cell dysfunction in a segment of type 2 diabetic patients using oral hypoglycemic agents. Diabetes Care 32(6), 1058–1062 (2009). https://doi.org/10.2337/dc08-1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. C.K. Kramer, H. Choi, B. Zinman, R. Retnakaran, Glycemic variability in patients with early type 2 diabetes: the impact of improvement in beta-cell function. Diabetes Care 37(4), 1116–1123 (2014). https://doi.org/10.2337/dc13-2591

    Article  CAS  PubMed  Google Scholar 

  10. K.D. Kohnert, P. Heinke, L. Vogt, P. Augstein, E. Salzsieder, Declining ss-cell function is associated with the lack of long-range negative correlation in glucose dynamics and increased glycemic variability: a retrospective analysis in patients with type 2 diabetes. J. Clin. Transl. Endocrinol. 1(4), 192–199 (2014). https://doi.org/10.1016/j.jcte.2014.09.003

    Article  PubMed  PubMed Central  Google Scholar 

  11. T.P. Solomon, S.K. Malin, K. Karstoft, S.R. Kashyap, J.M. Haus, J.P. Kirwan, Pancreatic beta-cell function is a stronger predictor of changes in glycemic control after an aerobic exercise intervention than insulin sensitivity. J. Clin. Endocrinol. Metab. 98(10), 4176–4186 (2013). https://doi.org/10.1210/jc.2013-2232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. F.S. Fang, X.L. Cheng, Y.P. Gong, L.C. Wang, L. Li, J. Li, H. Tian, C.L. Li, Association between glycemic indices and beta cell function in patients with newly diagnosed type 2 diabetes. Curr. Med. Res. Opin. 30(8), 1437–1440 (2014). https://doi.org/10.1185/03007995.2014.918030

    Article  CAS  PubMed  Google Scholar 

  13. T. Chen, F. Xu, J.B. Su, X.Q. Wang, J.F. Chen, G. Wu, Y. Jin, X.H. Wang, Glycemic variability in relation to oral disposition index in the subjects with different stages of glucose tolerance. Diabetol. Metab. Syndr. 5, 38 (2013). https://doi.org/10.1186/1758-5996-5-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S.S. Shankar, A. Vella, R.H. Raymond, M.A. Staten, R.A. Calle, R.N. Bergman, C. Cao, D. Chen, C. Cobelli, C. Dalla Man, M. Deeg, J.Q. Dong, D.S. Lee, D. Polidori, R.P. Robertson, H. Ruetten, D. Stefanovski, M.T. Vassileva, G.C. Weir, D.A. Fryburg, Standardized mixed-meal tolerance and arginine stimulation tests provide reproducible and complementary measures of beta-cell function: results from the Foundation for the National Institutes of Health Biomarkers Consortium Investigative Series. Diabetes Care 39(9), 1602–1613 (2016). https://doi.org/10.2337/dc15-0931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. H. Larsson, G. Berglund, B. Ahren, Glucose modulation of insulin and glucagon secretion is altered in impaired glucose tolerance. J. Clin. Endocrinol. Metab. 80(6), 1778–1782 (1995). https://doi.org/10.1210/jcem.80.6.7775622

    Article  CAS  PubMed  Google Scholar 

  16. H. Larsson, B. Ahren, Glucose-dependent arginine stimulation test for characterization of islet function: studies on reproducibility and priming effect of arginine. Diabetologia 41(7), 772–777 (1998). https://doi.org/10.1007/s001250050986

    Article  CAS  PubMed  Google Scholar 

  17. T. Danne, R. Nimri, T. Battelino, R.M. Bergenstal, K.L. Close, J.H. DeVries, S. Garg, L. Heinemann, I. Hirsch, S.A. Amiel, R. Beck, E. Bosi, B. Buckingham, C. Cobelli, E. Dassau, F.J. Doyle 3rd, S. Heller, R. Hovorka, W. Jia, T. Jones, O. Kordonouri, B. Kovatchev, A. Kowalski, L. Laffel, D. Maahs, H.R. Murphy, K. Norgaard, C.G. Parkin, E. Renard, B. Saboo, M. Scharf, W.V. Tamborlane, S.A. Weinzimer, M. Phillip, International consensus on use of continuous glucose monitoring. Diabetes Care 40(12), 1631–1640 (2017). https://doi.org/10.2337/dc17-1600

    Article  PubMed  PubMed Central  Google Scholar 

  18. J.R. Petrie, A.L. Peters, R.M. Bergenstal, R.W. Holl, G.A. Fleming, L. Heinemann, Improving the clinical value and utility of CGM systems: issues and recommendations: a joint statement of the European Association for the Study of Diabetes and the American Diabetes Association Diabetes Technology Working Group. Diabetologia 60(12), 2319–2328 (2017). https://doi.org/10.1007/s00125-017-4463-4

    Article  PubMed  Google Scholar 

  19. T. Battelino, T. Danne, R.M. Bergenstal, S.A. Amiel, R. Beck, T. Biester, E. Bosi, B.A. Buckingham, W.T. Cefalu, K.L. Close, C. Cobelli, E. Dassau, J.H. DeVries, K.C. Donaghue, K. Dovc, F.J. Doyle 3rd, S. Garg, G. Grunberger, S. Heller, L. Heinemann, I.B. Hirsch, R. Hovorka, W. Jia, O. Kordonouri, B. Kovatchev, A. Kowalski, L. Laffel, B. Levine, A. Mayorov, C. Mathieu, H.R. Murphy, R. Nimri, K. Norgaard, C.G. Parkin, E. Renard, D. Rodbard, B. Saboo, D. Schatz, K. Stoner, T. Urakami, S.A. Weinzimer, M. Phillip, Clinical targets for continuous glucose monitoring data interpretation: recommendations from the International Consensus on Time in Range. Diabetes Care 42(8), 1593–1603 (2019). https://doi.org/10.2337/dci19-0028

    Article  PubMed  Google Scholar 

  20. American Diabetes Association. Standards of medical care in diabetes–2010. Diabetes Care 33(Suppl 1), S11–S61 (2010). https://doi.org/10.2337/dc10-S011

  21. G. Boden, J. Ruiz, C.J. Kim, X. Chen, Effects of prolonged glucose infusion on insulin secretion, clearance, and action in normal subjects. Am. J. Physiol. 270(2 Pt 1), E251–E258 (1996). https://doi.org/10.1152/ajpendo.1996.270.2.E251

    Article  CAS  PubMed  Google Scholar 

  22. C. Hu, C. Wang, R. Zhang, X. Ma, J. Wang, J. Lu, W. Qin, Y. Bao, K. Xiang, W. Jia, Variations in KCNQ1 are associated with type 2 diabetes and beta cell function in a Chinese population. Diabetologia 52(7), 1322–1325 (2009). https://doi.org/10.1007/s00125-009-1335-6

    Article  CAS  PubMed  Google Scholar 

  23. J. Lu, X. Ma, J. Zhou, L. Zhang, Y. Mo, L. Ying, W. Lu, W. Zhu, Y. Bao, R.A. Vigersky, W. Jia, Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes. Diabetes Care 41(11), 2370–2376 (2018). https://doi.org/10.2337/dc18-1131

    Article  CAS  PubMed  Google Scholar 

  24. J.C. Levy, D.R. Matthews, M.P. Hermans, Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 21(12), 2191–2192 (1998). https://doi.org/10.2337/diacare.21.12.2191

    Article  CAS  PubMed  Google Scholar 

  25. E. Gerbaud, R. Darier, M. Montaudon, M.C. Beauvieux, C. Coffin-Boutreux, P. Coste, H. Douard, A. Ouattara, B. Catargi, Glycemic variability is a powerful independent predictive factor of midterm major adverse cardiac events in patients with diabetes with acute coronary syndrome. Diabetes Care 42(4), 674–681 (2019). https://doi.org/10.2337/dc18-2047

    Article  PubMed  Google Scholar 

  26. H. Takahashi, N. Iwahashi, J. Kirigaya, S. Kataoka, Y. Minamimoto, M. Gohbara, T. Abe, K. Okada, Y. Matsuzawa, M. Konishi, N. Maejima, K. Hibi, M. Kosuge, T. Ebina, K. Tamura, K. Kimura, Glycemic variability determined with a continuous glucose monitoring system can predict prognosis after acute coronary syndrome. Cardiovasc Diabetol. 17(1), 116 (2018). https://doi.org/10.1186/s12933-018-0761-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Frontoni, P. Di Bartolo, A. Avogaro, E. Bosi, G. Paolisso, A. Ceriello, Glucose variability: an emerging target for the treatment of diabetes mellitus. Diabetes Res. Clin. Pract. 102(2), 86–95 (2013). https://doi.org/10.1016/j.diabres.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  28. S.O. Oyibo, Y.D. Prasad, N.J. Jackson, E.B. Jude, A.J. Boulton, The relationship between blood glucose excursions and painful diabetic peripheral neuropathy: a pilot study. Diabet. Med. 19(10), 870–873 (2002)

    Article  CAS  Google Scholar 

  29. J. Smith-Palmer, M. Brandle, R. Trevisan, M. Orsini Federici, S. Liabat, W. Valentine, Assessment of the association between glycemic variability and diabetes-related complications in type 1 and type 2 diabetes. Diabetes Res. Clin. Pract. 105(3), 273–284 (2014). https://doi.org/10.1016/j.diabres.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  30. X. Tang, S. Li, Y. Wang, M. Wang, Q. Yin, P. Mu, S. Lin, X. Qian, X. Ye, Y. Chen, Glycemic variability evaluated by continuous glucose monitoring system is associated with the 10-y cardiovascular risk of diabetic patients with well-controlled HbA1c. Clin. Chim. Acta 461, 146–150 (2016). https://doi.org/10.1016/j.cca.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  31. G. Yuan, H. Hu, S. Wang, Q. Yang, S. Yu, W. Sun, W. Qian, C. Mao, L. Zhou, D. Chen, Z. Wang, Q. Gong, D. Wang, Improvement of beta-cell function ameliorated glycemic variability in patients with newly diagnosed type 2 diabetes after short-term continuous subcutaneous insulin infusion or in combination with sitagliptin treatment: a randomized control trial. Endocr. J. 62(9), 817–834 (2015). https://doi.org/10.1507/endocrj.EJ15-0160

    Article  CAS  PubMed  Google Scholar 

  32. A.M. Marker, A.E. Noser, M.A. Clements, S.R. Patton, Shared responsibility for type 1 diabetes care is associated with glycemic variability and risk of glycemic excursions in youth. J. Pediatr. Psychol. 43(1), 61–71 (2018). https://doi.org/10.1093/jpepsy/jsx081

    Article  PubMed  Google Scholar 

  33. Y. Huang, C. Heng, J. Wei, X. Jing, X. Wang, G. Zhao, J. Hou, Q. Liu, K. Jiao, Influencing factors of glycemic variability in hospitalized type 2 diabetes patients with insulin therapy: a Strobe-compliant article. Medicine 96(36), e8021 (2017). https://doi.org/10.1097/MD.0000000000008021

    Article  PubMed  PubMed Central  Google Scholar 

  34. M.B. Christensen, P. Gaede, E. Hommel, A. Gotfredsen, K. Norgaard, Glycaemic variability and hypoglycaemia are associated with C-peptide levels in insulin-treated type 2 diabetes. Diabetes Metab. (2019). https://doi.org/10.1016/j.diabet.2019.02.002

  35. B.L. Wajchenberg, Beta-cell failure in diabetes and preservation by clinical treatment. Endocr. Rev. 28(2), 187–218 (2007). https://doi.org/10.1210/10.1210/er.2006-0038

    Article  CAS  PubMed  Google Scholar 

  36. C. Greenbaum, K. Seidel, C. Pihoker, The case for intravenous arginine stimulation in lieu of mixed-meal tolerance tests as outcome measure for intervention studies in recent-onset type 1 diabetes. Diabetes Care 27(5), 1202–1204 (2004). https://doi.org/10.2337/diacare.27.5.1202

    Article  CAS  PubMed  Google Scholar 

  37. L.B. Harrison, B. Adams-Huet, P. Raskin, I. Lingvay, Beta-cell function preservation after 3.5 years of intensive diabetes therapy. Diabetes Care 35(7), 1406–1412 (2012). https://doi.org/10.2337/dc11-2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. J. Weng, Y. Li, W. Xu, L. Shi, Q. Zhang, D. Zhu, Y. Hu, Z. Zhou, X. Yan, H. Tian, X. Ran, Z. Luo, J. Xian, L. Yan, F. Li, L. Zeng, Y. Chen, L. Yang, S. Yan, J. Liu, M. Li, Z. Fu, H. Cheng, Effect of intensive insulin therapy on beta-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes: a multicentre randomised parallel-group trial. Lancet 371(9626), 1753–1760 (2008). https://doi.org/10.1016/S0140-6736(08)60762-X

    Article  CAS  PubMed  Google Scholar 

  39. F. Pistrosch, C. Kohler, F. Schaper, W. Landgraf, T. Forst, M. Hanefeld, Effects of insulin glargine versus metformin on glycemic variability, microvascular and beta-cell function in early type 2 diabetes. Acta Diabetol. 50(4), 587–595 (2013). https://doi.org/10.1007/s00592-012-0451-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. The ORIGIN trial investigators., Characteristics associated with maintenance of mean A1C<6.5% in people with dysglycemia in the ORIGIN trial. Diabetes Care 36(10), 2915–2922 (2013). https://doi.org/10.2337/dc12-2238

    Article  CAS  PubMed Central  Google Scholar 

  41. L. Ji, P. Zhang, D. Zhu, X. Li, J. Ji, J. Lu, X. Guo, W. Jia, J. Weng, Y. Wu, W. Yang, D. Zou, Z. Zhou, C. Pan, Y. Gao, S.K. Garg, Observational Registry of Basal Insulin Treatment (ORBIT) in patients with type 2 diabetes uncontrolled with oral antihyperglycaemic drugs: real-life use of basal insulin in China. Diabetes Obes. Metab. 19(6), 822–830 (2017). https://doi.org/10.1111/dom.12886

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all the involved clinicians, nurses, and technicians for helping with the study. We are grateful to all participants for their dedication in data collection and laboratory measurements.

Authors contributions

J.Z. and G.H. conceived and designed the study. Y.S. (Y Si), Y.S. (Y Shen) and J.L. contributed to data collection, data analysis, and writing the paper. Y.S. (Y Si), L.Z. and Y.M. contributed to data analysis. W.L. and W.Z. contributed to conduction of study and data collection. X.M., Y.B. and J.Z. contributed to interpretation of data and revision of the paper. G.H. critically reviewed and edited the paper. All authors revised the paper for important intellectual content and have approved the final version.

Funding

This work was funded by the National Key R&D Program of China (2018YFC2001004), the Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support (20161430) and Shanghai Municipal Key Clinical Specialty.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Hu or Jian Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the study involving human participants were in accordance with the ethical standards of the Ethics Committee of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants or their legal guardians included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, Y., Shen, Y., Lu, J. et al. Impact of acute-phase insulin secretion on glycemic variability in insulin-treated patients with type 2 diabetes. Endocrine 68, 116–123 (2020). https://doi.org/10.1007/s12020-020-02201-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02201-y

Keywords

Navigation