Skip to main content

Advertisement

Log in

A nomogram for predicting 5-year incidence of type 2 diabetes in a Chinese population

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

To develop a nomogram for predicting 5-year incidence of type 2 diabetes (T2D) in Chinese adults.

Methods

This is a retrospective cohort study from a prospectively collected database. We included a total 32,766 adults free of T2D at baseline with a median follow-up of 3 years. Univariate and multivariate Cox regression analyses were applied to identify independent predictors. A nomogram was constructed to predict 5-year incident rate of T2D based on the multivariate analysis results. Harrell's C-indexes and calibration plots were used to evaluate the accuracy of the nomogram in both internal and external validations.

Results

The overall prevalence of T2D was 2.1%. Participants were randomly divided into a training set (n = 21,844) and a validation set (n = 10,922). After multivariate analysis in the training set, age, sex, BMI, hypertension, dyslipidemia, smoking status, and family history were found as risk predictors and integrated into the nomogram. Harrell's C-indexes were 0.815 (95% CI: 0.797–0.834) and 0.779 (95% CI: 0.747–0.811) in the training and validation sets, respectively. The calibration plots demonstrated good agreement between the estimated probability and the actual observation.

Conclusion

Our nomogram could be a simple and reliable tool for predicting 5-year risk of developing T2D in high-risk Chinese. Through the model, early identifying high-risk individuals is helpful for timely intervention to reduce the incidence of T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. N.H. Cho, J.E. Shaw, S. Karuranga, Y. Huang, J.D. da Rocha Fernandes, A.W. Ohlrogge, B. Malanda, IDF diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271–281 (2018). https://doi.org/10.1016/j.diabres.2018.02.023

    Article  CAS  Google Scholar 

  2. H. F. Wolde, A. Atsedeweyen, A. Jember, T. Awoke, M. Mequanent, A. T. Tsegaye, S. Alemu, Predictors of vascular complications among type 2 diabetes mellitus patients at University of Gondar Referral Hospital: a retrospective follow-up study. BMC Endocr. Disord. 18, 52 (2018). https://doi.org/10.1186/s12902-018-0280-0

  3. S. Eid, K.M. Sas, S.F. Abcouwer, E.L. Feldman, T.W. Gardner, S. Pennathur, P.E. Fort, New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia 62, 1539–1549 (2019). https://doi.org/10.1007/s00125-019-4959-1

    Article  PubMed  Google Scholar 

  4. L. Fuso, D. Pitocco, R. Antonelli-Incalzi, Diabetic lung, an underrated complication from restrictive functional pattern to pulmonary hypertension. Diabetes Metab. Res. Rev. e3159 (2019). https://doi.org/10.1002/dmrr.3159

  5. American Diabetes Association, Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl 1), S81–S90 (2014). https://doi.org/10.2337/dc14-S081

    Article  Google Scholar 

  6. G. T. Dong, L. L. Qu, X. F. Gong, B. Pang, W. T. Yan, J. P. Wei, Effect of social factors and the natural environment on the etiology and pathogenesis of diabetes mellitus. Int. J. Endocrinol. 8749291 (2019). https://doi.org/10.1155/2019/8749291

  7. M.S. Udler, Type 2 diabetes: multiple genes, multiple diseases. Curr. Diab. Rep. 19, 55 (2019). https://doi.org/10.1007/s11892-019-1169-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. J. S. Gold, J. Kong, T. Wang, S. Shen, Z. Zhang, W. Wang, A nomogram predicting the prognosis of young adult patients diagnosed with hepatocellular carcinoma: a population-based analysis. PLoS ONE 14 (2019). https://doi.org/10.1371/journal.pone.0219654

  9. L. Mao, X. H. Zhang, Y. H. Hu, X. P. Wang, Y. P. Song, J. He, W. W. Yang, J. L. Ma, Y. Z. Yan, L. T. Mu, J. Y. Zhang, K. Wang, H. Guo, R. L. Ma, S. X. Guo, Nomogram based on cytokines for cardiovascular diseases in Xinjiang Kazakhs. Mediat. Inflamm. 4756295, (2019). https://doi.ord/10.1155/2019/4756295

  10. Y. Chen, X. Zhang, J. Yuan, B. Cai, X. Wang, X. Wu, Y. Zhang, X. Zhang, T. Yin, X. Zhu, Y. Gu, S. Cui, Z. Lu, X. Li, Association of body mass index and age with incident diabetes in Chinese adults: a population-based cohort study. Dryad Digital Repository, (2018)

  11. Y. Chen, X.P. Zhang, J. Yuan, B. Cai, X.L. Wang, X.L. Wu, Y.H. Zhang, X.Y. Zhang, T. Yin, X.H. Zhu, Y.J. Gu, S.W. Cui, Z.Q. Lu, X.Y. Li, Association of body mass index and age with incident diabetes in Chinese adults: a population-based cohort study. BMJ Open 8, e021768 (2018). https://doi.org/10.1136/bmjopen-2018-021768

    Article  PubMed  PubMed Central  Google Scholar 

  12. R.L. Camp, M. Dolled-Filhart, D.L. Rimm, X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin. Cancer Res. 10, 7252–7259 (2004). https://doi.org/10.1158/1078-0432.CCR-04-0713

    Article  CAS  PubMed  Google Scholar 

  13. WHO Expert Consultation, Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363, 157–163 (2004). https://doi.org/10.1016/S0140-6736(03)15268-3

    Article  Google Scholar 

  14. F.E. Harrell Jr., K.L. Lee, D.B. Mark, Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med 15, 361–387 (1996). https://doi.org/10.1002/(SICI)1097-0258(19960229)15:43.0.CO;2-4

    Article  PubMed  Google Scholar 

  15. M.J. Pencina, R.B. D’Agostino, Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation. Stat. Med. 23, 2109–2123 (2004). https://doi.org/10.1002/sim.1802

    Article  PubMed  Google Scholar 

  16. M.B. Schulze, K. Hoffmann, H. Boeing, J. Linseisen, S. Rohrmann, M. Mohlig, A.F. Pfeiffer, J. Spranger, C. Thamer, H.U. Haring, A. Fritsche, H.G. Joost, An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes. Diabetes Care 30, 510–515 (2007). https://doi.org/10.2337/dc06-2089

    Article  PubMed  Google Scholar 

  17. H.S. Kahn, Y.J. Cheng, T.J. Thompson, G. Imperatore, E.W. Gregg, Two risk-scoring systems for predicting incident diabetes mellitus in U.S. adults age 45 to 64 years. Ann. Intern. Med. 150, 741–751 (2009). https://doi.org/10.7326/0003-4819-150-11-200906020-00002

    Article  PubMed  Google Scholar 

  18. H. Bang, A.M. Edwards, A.S. Bomback, C.M. Ballantyne, D. Brillon, M.A. Callahan, S.M. Teutsch, A.I. Mushlin, L.M. Kern, Development and validation of a patient self-assessment score for diabetes risk. Ann. Intern. Med. 151, 775–783 (2009). https://doi.org/10.7326/0003-4819-151-11-200912010-00005

    Article  PubMed  PubMed Central  Google Scholar 

  19. W.G. Gao, Y.H. Dong, Z.C. Pang, H.R. Nan, S.J. Wang, J. Ren, L. Zhang, J. Tuomilehto, Q. Qiao, A simple Chinese risk score for undiagnosed diabetes. Diabet. Med. 27, 274–281 (2010). https://doi.org/10.1111/j.1464-5491.2010.02943.x

    Article  CAS  PubMed  Google Scholar 

  20. C. Pongchaiyakul, P. Kotruchin, E. Wanothayaroj, T.V. Nguyen, An innovative prognostic model for predicting diabetes risk in the Thai population. Diabetes Res. Clin. Pract. 94, 193–198 (2011). https://doi.org/10.1016/j.diabres.2011.07.019

    Article  PubMed  Google Scholar 

  21. S.M. Chung, J.C. Park, J.S. Moon, J.Y. Lee, Novel nomogram for screening the risk of developing diabetes in a Korean population. Diabetes Res. Clin. Pract. 142, 286–293 (2018). https://doi.org/10.1016/j.diabres.2018.05.036

    Article  PubMed  Google Scholar 

  22. C. Glumer, D. Vistisen, K. Borch-Johnsen, S. Colagiuri, DETECT-2 Collaboration, Risk scores for type 2 diabetes can be applied in some populations but not all. Diabetes Care 29, 410–414 (2006). https://doi.org/10.2337/diacare.29.02.06.dc05-0945

    Article  PubMed  Google Scholar 

  23. M.C. Coordt, R.C. Ruhe, R.B. McDonald, Aging and insulin secretion. Proc. Soc. Exp. Biol. Med. 209, 213–222 (1995). https://doi.org/10.3181/00379727-209-43879b

    Article  CAS  PubMed  Google Scholar 

  24. T. Dayeh, P. Volkov, S. Salo, E. Hall, E. Nilsson, A.H. Olsson, C.L. Kirkpatrick, C.B. Wollheim, L. Eliasson, T. Ronn, K. Bacos, C. Ling, Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet. 10, e1004160 (2014). https://doi.org/10.1371/journal.pgen.1004160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. K. Bacos, L. Gillberg, P. Volkov, A.H. Olsson, T. Hansen, O. Pedersen, A.P. Gjesing, H. Eiberg, T. Tuomi, P. Almgren, L. Groop, L. Eliasson, A. Vaag, T. Dayeh, C. Ling, Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat. Commun. 7, 11089 (2016). https://doi.org/10.1038/ncomms11089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. L.L. Lipscombe, J.E. Hux, Trends in diabetes prevalence, incidence, and mortality in Ontario, Canada 1995–2005: a population-based study. Lancet 369, 750–756 (2007). https://doi.org/10.1016/S0140-6736(07)60361-4

    Article  PubMed  Google Scholar 

  27. Y.J. Choi, H.C. Kim, H.M. Kim, S.W. Park, J. Kim, D.J. Kim, Prevalence and management of diabetes in Korean adults: Korea National Health and Nutrition Examination Surveys 1998–2005. Diabetes Care 32, 2016–2020 (2009). https://doi.org/10.2337/dc08-2228

    Article  PubMed  PubMed Central  Google Scholar 

  28. E. Hall, P. Volkov, T. Dayeh, J. L. S. Esguerra, S. Salo, L. Eliasson, T. Ronn, K. Bacos, C. Ling, Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets. Genome Biol. 15, 522 (2014). https://doi.org/10.1186/s13059-014-0522-z

  29. E.B. Geer, W. Shen, Gender differences in insulin resistance, body composition, and energy balance. Gend. Med. 6(Suppl 1), 60–75 (2009). https://doi.org/10.1016/j.genm.2009.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  30. B.M. Popkin, L.S. Adair, S.W. Ng, Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 70, 3–21 (2012). https://doi.org/10.1111/j.1753-4887.2011.00456.x

    Article  PubMed  PubMed Central  Google Scholar 

  31. R. Barazzoni, G. Gortan Cappellari, M. Ragni, E. Nisoli, Insulin resistance in obesity: an overview of fundamental alterations. Eat. Weight Disord. 23, 149–157 (2018). https://doi.org/10.1007/s40519-018-0481-6

    Article  PubMed  Google Scholar 

  32. J. Ye, Mechanisms of insulin resistance in obesity. Front Med. 7, 14–24 (2013). https://doi.org/10.1007/s11684-013-0262-6

    Article  PubMed  PubMed Central  Google Scholar 

  33. J.R. Sowers, Insulin resistance and hypertension. Am. J. Physiol. Heart Circ. Physiol. 286, H1597–H1602 (2004). https://doi.org/10.1152/ajpheart.00026.2004

    Article  CAS  PubMed  Google Scholar 

  34. E.J. Rhee, K. Han, S.H. Ko, K.S. Ko, W.Y. Lee, Increased risk for diabetes development in subjects with large variation in total cholesterol levels in 2,827,950 Koreans: a nationwide population-based study. PLoS ONE 12, e0176615 (2017). https://doi.org/10.1371/journal.pone.0176615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A. Tirosh, I. Shai, R. Bitzur, I. Kochba, D. Tekes-Manova, E. Israeli, T. Shochat, A. Rudich, Changes in triglyceride levels over time and risk of type 2 diabetes in young men. Diabetes Care 31, 2032–2037 (2008). https://doi.org/10.2337/dc08-0825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. H. Lee, H. S. Kim, Y. M. Park, H. S. Kwon, K. H. Yoon, K. Han, M. K. Kim, HDL-cholesterol, its variability and the risk of diabetes: a nationwide population-based study. J Clin. Endocrinol. Metab. (2019). https://doi.org/10.1210/jc.2019-01080

  37. M. Janghorbani, N. Soltanian, M. Amini, A. Aminorroaya, Low-density lipoprotein cholesterol and risk of type 2 diabetes: the Isfahan diabetes prevention study. Diabetes Metab. Syndr. 12, 715–719 (2018). https://doi.org/10.1016/j.dsx.2018.04.019

    Article  PubMed  Google Scholar 

  38. M. Seghieri, D. Trico, A. Natali, The impact of triglycerides on glucose tolerance: lipotoxicity revisited. Diabetes Metab. 43, 314–322 (2017). https://doi.org/10.1016/j.diabet.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  39. J.K. Kruit, L.R. Brunham, C.B. Verchere, M.R. Hayden, HDL and LDL cholesterol significantly influence beta-cell function in type 2 diabetes mellitus. Curr. Opin. Lipido. 21, 178–185 (2010). https://doi.org/10.1097/MOL.0b013e328339387b

    Article  CAS  Google Scholar 

  40. B.G. Drew, K.A. Rye, S.J. Duffy, P. Barter, B.A. Kingwell, The emerging role of HDL in glucose metabolism. Nat. Rev. Endocrinol. 8, 237–245 (2012). https://doi.org/10.1038/nrendo.2011.235

    Article  CAS  PubMed  Google Scholar 

  41. H.C. Yeh, B.B. Duncan, M.I. Schmidt, N.Y. Wang, F.L. Brancati, Smoking, smoking cessation, and risk for type 2 diabetes mellitus: a cohort study. Ann. Intern. Med. 152, 10–17 (2010). https://doi.org/10.7326/0003-4819-152-1-201001050-00005

    Article  PubMed  PubMed Central  Google Scholar 

  42. C. Chen, Y.Q. Tu, P. Yang, Q.L. Yu, S. Zhang, F. Xiong, C.Y. Wang, Assessing the impact of cigarette smoking on beta-cell function and risk for type 2 diabetes in a non-diabetic Chinese cohort. Am. J. Transl. Res. 10, 2164–2174 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. J. Maddatu, E. Anderson-Baucum, C. Evans-Molina, Smoking and the risk of type 2 diabetes. Transl. Res 184, 101–107 (2017). https://doi.org/10.1016/j.trsl.2017.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. S. Akter, A. Goto, T. Mizoue, Smoking and the risk of type 2 diabetes in Japan: a systematic review and meta-analysis. J. Epidemiol. 27, 553–561 (2017). https://doi.org/10.1016/j.je.2016.12.017

    Article  PubMed  PubMed Central  Google Scholar 

  45. K. Hemminki, X. Li, K. Sundquist, J. Sundquist, Familial risks for type 2 diabetes in Sweden. Diabetes Care 33, 293–297 (2010). https://doi.org/10.2337/dc09-0947

    Article  PubMed  Google Scholar 

  46. M. Sakurai, K. Nakamura, K. Miura, T. Takamura, K. Yoshita, S. Sasaki, S.Y. Nagasawa, Y. Morikawa, M. Ishizaki, T. Kido, Y. Naruse, Y. Suwazono, H. Nakagawa, Family history of diabetes, lifestyle factors, and the 7-year incident risk of type 2 diabetes mellitus in middle-aged Japanese men and women. J. Diabetes Investig. 4, 261–268 (2013). https://doi.org/10.1111/jdi.12033

    Article  PubMed  PubMed Central  Google Scholar 

  47. M.C. Cornelis, N. Zaitlen, F.B. Hu, P. Kraft, A.L. Price, Genetic and environmental components of family history in type 2 diabetes. Hum. Genet. 134, 259–267 (2015). https://doi.org/10.1007/s00439-014-1519-0

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoqun Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study protocol was approved by the Ethics Committee of The First Affiliated Hospital of Shantou University Medical College, China.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Guo, D., Chen, J. et al. A nomogram for predicting 5-year incidence of type 2 diabetes in a Chinese population. Endocrine 67, 561–568 (2020). https://doi.org/10.1007/s12020-019-02154-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-02154-x

Keywords

Navigation