Skip to main content

Advertisement

Log in

Risk factors for prevalent diabetic retinopathy and proliferative diabetic retinopathy in type 1 diabetes

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Age at diagnosis of type 1 diabetes (DM1) has been implied as an important factor associated with the development of the microvascular complications. Our aim was to identify factors associated with prevalent diabetic retinopathy (DR) and proliferative diabetic retinopathy (PDR) in DM1 people with early and late-onset.

Methods

We reviewed medical records from all DM1 people from the reference area of a tertiary center (about 340,000 persons). Univariate and multivariate logistic regression were used to assess the relationship between potential risk factors (sociodemographic, diabetes-related, co-morbidities, and laboratory parameters) and prevalent DR/PDR. We performed an analysis comparing patients diagnosed before (early-onset) and after (late-onset) 18 years of age.

Results

We included 140 patients in early-onset DM1 group and 169 in late-onset DM1 group. Longer duration of diabetes and HbA1c remained associated with prevalent DR in both groups after adjusting for potential risk factors. Nephropathy was associated with prevalent DR in the late-onset group but not in the early-onset group. Peripheral neuropathy remained associated with prevalent PDR when modeled together in the multivariate model. High BMI demonstrated a significative association with PDR in early but not in the late-onset DM1 group.

Conclusions

Although previous reports suggest that age at DM1 diagnosis may have a role in DR prevalence, the risk factors for DR in early and late-onset DM1 were similar for both groups. Duration of disease and lifelong metabolic control were the major predictors for DR in both groups. Nephropathy was associated with DR in patients with late-onset disease. Neuropathy was associated with PDR occurrence in both groups. BMI was associated with PDR early-onset DM1 group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. W.-P. You, M. Henneberg, Type 1 diabetes prevalence increasing globally and regionally: the role of natural selection and life expectancy at birth. BMJ Open Diabetes Res. Care. 4(1), e000161 (2016). https://doi.org/10.1136/bmjdrc-2015-000161

    Article  PubMed  PubMed Central  Google Scholar 

  2. International Diabetes Federation. Diabetes Atlas, 8th edn. www.diabetesatlas.org. 2018. Accessed 8 Aug 2018.

  3. D.M. Maahs, N.A. West, J.M. Lawrence, E.J. Mayer-Davis, Chapter 1: epidemiology of type 1 diabetes. Endocrinol. Metab. Clin. North Am. 39(3), 481–497 (2010). https://doi.org/10.1016/j.ecl.2010.05.011.Chapter

    Article  PubMed  PubMed Central  Google Scholar 

  4. P.A. Diaz-Valencia, P. Bougnères, A.-J. Valleron, Global epidemiology of type 1 diabetes in young adults and adults: a systematic review. BMC Public Health 15(1), 255 (2015). https://doi.org/10.1186/s12889-015-1591-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. N.J. Thomas, S.E. Jones, M.N. Weedon, B.M. Shields, R.A. Oram, A.T. Hattersley, Frequency and phenotype of type 1 diabetes in the first six decades of life: a cross-sectional, genetically stratified survival analysis from UK Biobank. Lancet Diabetes Endocrinol. 6(2), 122–129 (2018). https://doi.org/10.1016/S2213-8587(17)30362-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. T. Bulum, M. Tomic, L. Duvnjak, Total serum cholesterol increases risk for development and progression of nonproliferative retinopathy in patients with type 1 diabetes without therapeutic intervention: Prospective, Observational Study. Arch. Med Res. 48(5), 467–471 (2017). https://doi.org/10.1016/j.arcmed.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  7. J.E. Grunwald, J. Alexander, G.-S. Ying, et al., Retinopathy and chronic kidney disease in the Chronic Renal Insufficiency Cohort (CRIC) study. Arch. Ophthalmol. (Chic., Ill. 1960). 130(9), 1136–1144 (2012). https://doi.org/10.1001/archophthalmol.2012.1800

    Article  Google Scholar 

  8. J. Mehlsen, M. Erlandsen, P.L. Poulsen, T. Bek, Identification of independent risk factors for the development of diabetic retinopathy requiring treatment. Acta Ophthalmol. 89(6), 515–521 (2011). https://doi.org/10.1111/j.1755-3768.2009.01742.x

    Article  PubMed  Google Scholar 

  9. D.A. Stram, X. Jiang, R. Varma, et al., Factors associated with prevalent diabetic retinopathy in Chinese Americans: The Chinese American Eye Study. Ophthalmol Retin. 1–10. (2017) https://doi.org/10.1016/j.oret.2017.05.014

    Article  Google Scholar 

  10. R.W. Jansson, K.O. Hufthammer, J. Krohn, Diabetic retinopathy in type 1 diabetes patients in Western Norway. Acta Ophthalmol. 1–10 (2018) https://doi.org/10.1111/aos.13654

    Article  CAS  Google Scholar 

  11. E.Y.-C. Kang, F.-S. Lo, J.-P. Wang, et al., Nomogram for prediction of non-proliferative diabetic retinopathy in juvenile-onset type 1 diabetes: a cohort study in an Asian population. Sci. Rep. 8(1), 12164 (2018). https://doi.org/10.1038/s41598-018-30521-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A.M. Diallo, J.L. Novella, C. Lukas, et al., Early predictors of diabetic retinopathy in type 1 diabetes: The Retinopathy Champagne Ardenne Diabète (ReCAD) study. J. Diabetes Complicat. 32(8), 753–758 (2018). https://doi.org/10.1016/j.jdiacomp.2018.05.011

    Article  PubMed  Google Scholar 

  13. S.Y. Wang, C.A. Andrews, W.H. Herman, T.W. Gardner, J.D. Stein, Incidence and risk factors for developing diabetic retinopathy among youths with type 1 or type 2 diabetes throughout the United States. Ophthalmology 124(4), 424–430 (2017). https://doi.org/10.1016/j.ophtha.2016.10.031

    Article  PubMed  Google Scholar 

  14. A. Penman, H. Hancock, E. Papavasileiou, et al., Risk factors for proliferative diabetic retinopathy in african americans with type 2 diabetes risk factors for proliferative diabetic retinopathy in African Americans with. 6586 (2016). https://doi.org/10.3109/09286586.2015.1119287

    Article  Google Scholar 

  15. R.V. Rivera-Virtudazo, A.K.G. Tapia, J.F.B. Valenzuela, L.D. Cruz, H.D. Mendoza, E.V. Castriciones, Lacunarity Analysis of TEM Images of Heat-Treated Hybrid Organosilica Materials. In: Innovations in Chemical Biology. Dordrecht: Springer Netherlands, Dordrechtp. 397–403. https://doi.org/10.1007/978-1-4020-6955-0_47

  16. M. Nordwall, M. Fredriksson, J. Ludvigsson, H.J. Arnqvist, Impact of age of onset, puberty, and glycemic control followed from diagnosis on incidence of retinopathy in type 1 diabetes: The VISS study. Diabetes Care. 42(4), 609–616 (2019). https://doi.org/10.2337/dc18-1950

    Article  CAS  PubMed  Google Scholar 

  17. J.N. Kostraba, J.S. Dorman, T.J. Orchard, et al., Contribution of diabetes duration before puberty to development of microvascular complications in IDDM subjects. Diabetes Care. 12(10), 686–693 (1989). https://doi.org/10.2337/diacare.12.10.686

    Article  CAS  PubMed  Google Scholar 

  18. C.E. Kullberg, M. Abrahamsson, H.J. Arnqvist, K. Finnström, J. Ludvigsson, VISS Study Group. Prevalence of retinopathy differs with age at onset of diabetes in a population of patients with Type 1 diabetes. Diabet Med. 19(11):924–931. (2002). http://www.ncbi.nlm.nih.gov/pubmed/12421429. Accessed 29 Aug 2018

    Article  CAS  Google Scholar 

  19. Census 2011. INE, Instituto Nacional de Estatística (Statistics Portugal). (2011) https://www.ine.pt. Accessed 20 Aug 2008.

  20. Z. Jorge, E. Lacerda Nobre, A. Macedo, J. Jácomede Castro, Prevalěncia da diabetes mellitus tipo 1 em Portugal, 1995-1999: Coorte de jovens do sexo masculino. Acta Med Port. 16(4), 251–253 (2003)

    CAS  PubMed  Google Scholar 

  21. N.D.D. Group, Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. National Diabetes Data Group. Diabetes 28(12), 1039–1057 (1979). https://doi.org/10.2337/DIAB.28.12.1039

    Article  Google Scholar 

  22. Diabetes Control and Complications Trial Research Group, D.M. Nathan, S. Genuth, et al., The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329(14), 977–986 (1993). https://doi.org/10.1056/NEJM199309303291401

    Article  Google Scholar 

  23. UKPDS., Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet (Lond., Engl.). 352(9131), 837–853 (1998). http://www.ncbi.nlm.nih.gov/pubmed/9742976 Accessed 7 Oct 2018.

  24. H.P. Hammes, W. Kerner, S. Hofer, et al., Diabetic retinopathy in type 1 diabetes—a contemporary analysis of 8,784 patients. Diabetologia 54(8), 1977–1984 (2011). https://doi.org/10.1007/s00125-011-2198-1

    Article  CAS  PubMed  Google Scholar 

  25. K. Hietala, V. Harjutsalo, C. Forsblom, P. Summanen, P.-H. Groop, FinnDiane Study Group on behalf of the FS. Age at onset and the risk of proliferative retinopathy in type 1 diabetes. Diabetes Care. 33(6), 1315–1319 (2010). https://doi.org/10.2337/dc09-2278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. L. Forga, M.J. Goñi, B. Ibáñez, K. Cambra, M. García-Mouriz, A. Iriarte, Influence of age at diagnosis and time-dependent risk factors on the development of diabetic retinopathy in patients with type 1 diabetes. J. Diabetes Res. 2016, 9898309 (2016). https://doi.org/10.1155/2016/9898309

    Article  PubMed  PubMed Central  Google Scholar 

  27. N. Patel, L. Verchinina, M. Wichorek, et al., Identification of population characteristics through implementation of the Comprehensive Diabetic Retinopathy Program. Clin. Diabetes Endocrinol. 5(1), 1–8 (2019). https://doi.org/10.1186/s40842-019-0079-6

    Article  CAS  Google Scholar 

  28. A.R. Shah, A.N. Van Horn, L. Verchinina, et al., Blood Pressure Is Associated with Receiving Intravitreal Anti–Vascular Endothelial Growth Factor Treatment in Patients with Diabetes. Ophthalmol. Retin. 3(5), 410–416 (2019). https://doi.org/10.1016/j.oret.2019.01.019

    Article  Google Scholar 

  29. M.B. Larsen, J.E. Henriksen, J. Grauslund, T. Peto, Prevalence and risk factors for diabetic retinopathy in 17 152 patients from the island of Funen, Denmark. Acta Ophthalmol. 95(8), 778–786 (2017). https://doi.org/10.1111/aos.13449

    Article  CAS  PubMed  Google Scholar 

  30. B.E.K. Klein, K.L. Horak, K.E. Lee, et al., Neural dysfunction and retinopathy in persons with type 1 diabetes. Ophthalmic Epidemiol. 25(5–6), 373–378 (2018). https://doi.org/10.1080/09286586.2018.1489971

    Article  PubMed  PubMed Central  Google Scholar 

  31. B. Pemp, S. Palkovits, K. Howorka, et al., Correlation of retinal neurodegeneration with measures of peripheral autonomic neuropathy in type 1 diabetes. Acta Ophthalmol. 96(7), e804–810. (2018). https://doi.org/10.1111/aos.13733

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Falcão.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laiginhas, R., Madeira, C., Lopes, M. et al. Risk factors for prevalent diabetic retinopathy and proliferative diabetic retinopathy in type 1 diabetes. Endocrine 66, 201–209 (2019). https://doi.org/10.1007/s12020-019-02047-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-02047-z

Keywords

Navigation